Passa ai contenuti principali

Legge di gravitazione universale

Tutto cominciò con una mela caduta in testa a Isaac Newton, almeno così dice la leggenda (anche se, a quanto pare, non è proprio una leggenda). Fu Newton il primo a intuire che la forza che fa cadere gli oggetti sulla Terra è la stessa forza che tiene legata la Luna alla Terra e i pianeti attorno al Sole. In realtà è una grande intuizione, perché non sembra che ci sia una correlazione così forte tra i due fenomeni. Potremmo pensare: “ma allora perché la Luna non cade sulla Terra, visto che c’è questa attrazione gravitazionale?”. La verità è che, in qualche modo, la Luna cade continuamente sulla Terra, ma questo moto di caduta è in ogni istante compensato dal moto stesso della Luna. C’è quindi un equilibrio tra la “forza centrifuga” che tende ad allontanare la Luna dalla Terra e la loro mutua attrazione gravitazionale.

Isaac Newton

Quindi l’intuizione di Newton fu quella di pensare che se la Luna si muove di moto approssimativamente circolare attorno alla Terra, quindi presenta una forza centrifuga che tende a farla sfuggire, come mai allora resta sempre alla stessa distanza e non sfugge via? Newton pensò che la forza che equilibra la forza centrifuga doveva essere esattamente la stessa forza di gravità che sentiamo sulla Terra, indebolita ovviamente dalla distanza superiore. Newton cercò di calcolare questa forza di attrazione e si accorse che, se questa fosse stata proporzionale a 1/r2 (dove r è la distanza tra la Terra e la Luna), si sarebbe potuto prevedere addirittura il tempo orbitale della Luna!

Ma Newton non si fermò a pensare che la forza di gravità che sentiamo sotto i nostri piedi si estendesse nello spazio solo fino alla Luna, ma che arrivasse persino a permeare l’intero Universo. Ecco perché il nome di gravitazione universale. In questo modo Newton poteva spiegare anche il moto dei pianeti attorno al Sole; quindi era la gravità del Sole che teneva i pianeti nelle loro orbite.

Ma qual è la grandezza fisica che “genera” questa forza di gravità? Newton propose che fosse la massa. In particolare era evidente che la forza di gravità tra due corpi con un certa massa fosse proporzionale al prodotto delle loro masse.

Questo lo possiamo dimostrare facilmente in questo modo:

Supponiamo di considerare il sistema Terra-Sole. Indichiamo con M la massa del Sole e con m quella della Terra. Sopponiamo inoltre che l’orbita della Terra sia circolare (approssimazione che non si discosta molto dalla realtà, dato che l’orbita terrestre è un’ellisse con eccentricità pari a 0,0167). Così possiamo ipotizzare che il moto della Terra sia circolare uniforme.

La forza che lega la Terra al Sole (quindi è una forza centripeta) è data dalla seconda legge di Newton:

dove m, come detto prima, è la massa della Terra.

Sappiamo anche che, in un moto circolare uniforme la velocità è data da:

dove:

e si chiama “frequenza angolare”.

Così possiamo scrivere che l’accelerazione centripeta è:

Sostituendo nell’espressione della seconda legge di Newton, possiamo scrivere:

A questo punto possiamo chiamare in causa la terza legge di Keplero per cercare di eliminare la dipendenza dal quadrato del tempo di quest’ultima formula.

La terza legge di Keplero afferma, infatti, che i cubi dei raggi delle orbite dei pianeti sono direttamente proporzionali ai quadrati dei loro periodi orbitali. Questa proporzionalità diretta la posso esprimere in questo modo:

Sapendo questo, sostituisco nell’espressione della forza, ottenendo:

Questa è la forza che il Sole esercita sulla Terra. Ma, simmetricamente, dobbiamo considerare anche la forza con cui la Terra attrae il Sole, che sarà data da:

dove, la massa M stavolta è quella del Sole e il segno meno è dovuto al fatto che tale forza, ovviamente, è in direzione opposta rispetto a quella vista prima.

Per il terzo principio della dinamica (legge di azione e reazione) posso quindi scrivere:

e quindi:

da cui ottengo:

A questo punto posso riscrivere le espressioni per F ed F’ in un altro modo. Se le moltiplico e divido entrambe per una stessa quantità (m/m o M/M) le posso “modificare” senza in realtà cambiare nulla.

Dato che, come avevamo visto in precedenza, risulta che:

possiamo eguagliare anche le quantità:

Sostituendo G in una qualsiasi delle espressioni di F o F’, otteniamo infine:

G è una costante che viene chiamata costante di gravitazione universale. Si tratta di un valore costante che può essere misurato e che di solito viene approssimato con il valore:

e che non è altro che la forza con cui si attraggono due masse di 1 Kg poste a 1 metro di distanza l’una dall’altra. Si noti che è un valore molto piccolo ed è per questo motivo che non sentiamo la forza di attrazione gravitazionale degli oggetti che ci circondano quotidianamente. Non perché non c’è, ma perché è troppo piccola per essere percepita con i nostri sensi. Invece percepiamo la forza di gravità della Terra perché ha una massa molto grande.

La legge di gravitazione universale può essere enunciata nel seguente modo:

due punti materiali si attraggono con una forza di intensità direttamente proporzionale al prodotto delle masse dei singoli corpi ed inversamente proporzionale al quadrato della loro distanza

Bisogna notare l’espressione “punti materiali”. Infatti la forza di gravità viene di solito definita tra corpi considerati puntiformi. Questo perché se consideriamo corpi celesti come il Sole o la Terra, la forza di gravità che esercitano è la stessa che si avrebbe se tutta la massa dei loro corpi sferici fosse concentrata nel loro centro.


Commenti

Post popolari in questo blog

Perché un numero moltiplicato per zero fa zero?

Ad alcuni potrà sembrare una domanda banale, ma non potete immaginare quante sono le persone che me lo chiedono e che prima di trovare una risposta degna di questo nome si scervellano senza successo. Evidentemente il problema non viene percepito come così banale. In realtà il “ mistero ” ha una risposta semplicissima. Per capire perché un numero qualsiasi (diverso da zero) moltiplicato per zero da come risultato zero , possiamo ricorrere ad un esempio . Come prima cosa dobbiamo pensare che i numeri sono degli “ insiemi ” di oggetti . Ad esempio il numero 5 lo possiamo immaginare come un insieme formato da 5 caramelle , o da 5 biglie, o da 5 oggetti qualsiasi. Se dobbiamo moltiplicare il numero 5 per il numero 3, significa quindi che dobbiamo prendere 3 insiemi formati da 5 caramelle. Se contiamo tutte le caramelle che adesso abbiamo, troviamo il numero 15. Occorre notare che anche se prendiamo 5 insiemi da 3 elementi, otteniamo 15 elementi. infatti 3x5=15, ma anche 5x3=15, come ci ...

Problemi WiFi con OS X Lion. La soluzione definitiva!

Sono tantissimi gli utenti che, dopo l'installazione del nuovo sistema operativo OS X Lion , hanno avuto gravi problemi con la connessione WiFi . Di solito il problema si presenta come una difficoltà di connessione con il router: la connessione dura pochi minuti e poi cade senza motivo. Su internet ci sono varie guide per cercare di risolvere il problema, ma nessuno di questi rimedi funziona veramente . Per fortuna qualcuno su internet ha trovato la soluzione definitiva : sostituire i driver WiFi della versione di OS X 10.7.0 (Lion) con quelli della versione 10.6.4 (Leopard) . In questo modo i problemi di connessione WiFi con Lion si risolvono completamente in pochi minuti. Come faccio a saperlo? Con il mio iMac 21,5 il metodo ha funzionato alla perfezione! :-) ( update : oggi 28 settembre 2011 ancora il wifi sta funzionando!) Ecco cosa bisogna fare ( attenzione che tutto ciò che farete da questo momento in poi è A VOSTRO RISCHIO E PERICOLO !) 1) Scaricare l...

Onde trasversali e onde longitudinali

  Un’onda che si forma muovendo l’estremità di una lunga molla è un esempio di onda elastica . Essa si chiama così perché si propaga grazie alle proprietà elastiche del mezzo materiale in cui ha origine. Onda trasversale . Un’onda elastica si può generare spostando alcune spire di una molla in direzione perpendicolare rispetto alla molla stessa. Per esempio, possiamo spostare una delle prime spire per poi rilasciarla: accade così che le spire contigue, sollecitate dalla prima, si mettano anch’esse in movimento, spostandosi trasversalmente rispetto alla direzione di propagazione dell’onda . Il processo poi continua, consentendo all’onda di investire spire sempre più lontane. Onda longitudinale . E’ possibile perturbare la molla anche in un altro modo e cioè avvicinando e poi rilasciando alcune spire di una lunga molla. Si ha così una regione di spire compresse che si sposta lungo la molla, seguita da un’altra zona di spire rade: ciascuna spira, quando è investita dalla pert...