Visualizzazione post con etichetta Matematica e Fisica. Mostra tutti i post
Visualizzazione post con etichetta Matematica e Fisica. Mostra tutti i post

martedì 4 luglio 2023

Emmy Noether, la donna che superò Einstein.

Emmy Noether è stata una delle più grandi matematiche del XX secolo, ma la sua vita e la sua carriera sono state segnate dalle discriminazioni di genere. In questo post, voglio raccontarvi la sua storia e il suo contributo alla scienza, mettendo in luce le difficoltà che le donne devono affrontare nel campo scientifico.


Emmy Noether nacque nel 1882 a Erlangen, in Germania, da una famiglia di ebrei tedeschi. Suo padre era un noto matematico e lei mostrò fin da piccola una grande passione per i numeri. Si iscrisse all'università di Erlangen, dove fu una delle poche donne ad ammissione alla facoltà di matematica. Si laureò nel 1907 con una tesi sulle forme algebriche invarianti.

Nonostante il suo talento, Emmy Noether non trovò facilmente un lavoro accademico, a causa del pregiudizio che esisteva nei confronti delle donne nel mondo universitario. Dovette lavorare come assistente non retribuita di vari professori, tra cui David Hilbert e Felix Klein, presso l'università di Gottinga. Qui si dedicò allo studio della teoria dei campi algebrici e della fisica matematica, portando un contibuto alla formulazione della relatività di Einstein.

Nel 1918, Emmy Noether formulò il suo celebre teorema, che stabilisce una relazione tra le simmetrie di un sistema fisico e le leggi di conservazione dell'energia, della quantità di moto e del momento angolare. Questo teorema è considerato uno dei più importanti e profondi della fisica moderna, ed è alla base della meccanica quantistica e della relatività generale.

Emmy Noether fu finalmente nominata professore straordinario nel 1919, ma senza stipendio né diritto di voto. Continuò a insegnare e a fare ricerca, sviluppando la teoria degli anelli, degli ideali e dei moduli, che sono concetti fondamentali dell'algebra astratta. Fu anche una delle fondatrici della scuola algebrica di Gottinga, che influenzò molti matematici successivi.

Nel 1933, Emmy Noether dovette lasciare la Germania a causa delle leggi razziali naziste, che proibivano agli ebrei di insegnare nelle università. Si trasferì negli Stati Uniti, dove ottenne una cattedra al Bryn Mawr College, in Pennsylvania. Qui continuò a lavorare sulla teoria dei campi algebrici e sulla topologia algebrica, fino alla sua morte improvvisa nel 1935, per complicazioni dopo un'operazione chirurgica.

Emmy Noether fu una donna eccezionale, che superò molti ostacoli per realizzare la sua vocazione scientifica. Il suo lavoro ha avuto un impatto enorme sulla matematica e sulla fisica del XX secolo, ma è stato spesso trascurato o minimizzato dai suoi colleghi maschi. La sua storia ci ricorda quanto sia importante promuovere la parità di genere nel campo scientifico e valorizzare il contributo delle donne alla scienza.

venerdì 16 giugno 2023

Viaggio nella relatività ristretta: le meraviglie dello spazio-tempo

Se ti affascina l'idea di viaggiare nel tempo, allora sei nel posto giusto. Oggi ti porterò in un affascinante viaggio nel mondo della relatività ristretta, una teoria rivoluzionaria che ha cambiato per sempre la nostra comprensione dello spazio e del tempo. Preparati ad esplorare il labirinto dello spazio-tempo e a scoprire i segreti della velocità della luce!



La crisi dei paradigmi

La fine del diciannovesimo secolo ha visto una crisi dei paradigmi nella fisica. Le equazioni di Newton, che avevano funzionato egregiamente per secoli, iniziarono a mostrare delle crepe. I fisici si resero conto che queste leggi non erano del tutto accurate quando si trattava di oggetti che si muovevano a velocità prossime a quella della luce. Questa crisi portò Einstein a formulare la sua teoria della relatività ristretta.


I postulati di Einstein

La relatività ristretta si basa su due postulati fondamentali di Einstein. Il primo afferma che le leggi della fisica sono le stesse in tutti i sistemi di riferimento inerziali, cioè sistemi che si muovono a velocità costante l'uno rispetto all'altro. Il secondo postulato sostiene che la velocità della luce nel vuoto è la stessa per tutti gli osservatori indipendentemente dal loro moto relativo.


Dilatazione del tempo e contrazione delle lunghezze

Uno dei concetti più sorprendenti della relatività ristretta è la dilatazione del tempo. Quando ci si muove a velocità prossime a quella della luce, il tempo rallenta rispetto a un osservatore in quiete. Questo fenomeno è stato confermato da numerosi esperimenti scientifici e ha importanti implicazioni nella nostra vita quotidiana. Inoltre, la relatività ristretta ci parla anche della contrazione delle lunghezze. Quando un oggetto si muove a velocità elevate, la sua lunghezza lungo la direzione del moto si contrae rispetto a un osservatore in quiete. Questo concetto può sembrare controintuitivo, ma è una diretta conseguenza della teoria di Einstein.


La celebre equazione di Einstein

La relatività ristretta è strettamente legata alla famosa equazione E=mc² di Einstein. Questa equazione esprime la relazione tra l'energia (E) di un oggetto e la sua massa (m) moltiplicata per la velocità della luce al quadrato (c²). Questo significa che la massa può essere convertita in energia e viceversa. Questa scoperta ha rivoluzionato il nostro modo di comprendere l'universo e ha aperto la strada alla fisica nucleare e all'energia atomica.


Il paradosso dei gemelli

Un esempio classico per comprendere la relatività ristretta è il paradosso dei gemelli. Immagina due gemelli identici, uno dei quali parte per un viaggio spaziale a velocità prossime a quella della luce mentre l'altro rimane sulla Terra. A causa della dilatazione del tempo, quando il gemello spaziale ritorna sulla Terra, scopre che è invecchiato meno del suo gemello rimasto sulla Terra. Questo paradosso dimostra in modo eloquente come il tempo possa essere influenzato dal movimento.


Conclusioni

La relatività ristretta di Einstein ci ha aperto un mondo affascinante e complesso. Attraverso i suoi postulati fondamentali e le sue implicazioni sorprendenti, questa teoria ci ha fornito una comprensione completamente nuova dello spazio, del tempo e della relazione tra di loro. La sua validità è stata ampiamente confermata da esperimenti e osservazioni, e continua a guidare la nostra comprensione dell'universo a livello macroscopico e microscopico. La relatività ristretta ci ha spinto a guardare al di là delle leggi della fisica classiche e ci ha aperto la strada a nuovi orizzonti di conoscenza.

Cos'è la relatività generale?

La relatività generale è la teoria che descrive la gravità come una proprietà dello spazio-tempo, la struttura che unisce le tre dimensioni spaziali e quella temporale. Fu formulata da Albert Einstein nel 1915, dopo aver sviluppato la relatività ristretta, che si occupa dei fenomeni che avvengono a velocità prossime a quella della luce.

La relatività generale si basa su due principi fondamentali: il principio di equivalenza e il principio di covarianza generale. Il primo afferma che non esiste alcuna differenza tra un campo gravitazionale e un'accelerazione: in altre parole, se ci troviamo in una navicella spaziale in caduta libera verso la Terra, non possiamo distinguere se siamo attratti dalla gravità o se stiamo accelerando verso il basso. Il secondo principio sostiene che le leggi della fisica devono avere la stessa forma in qualsiasi sistema di riferimento, anche se questo è curvo o in movimento.

La conseguenza più importante di questi principi è che la gravità non è una forza che agisce a distanza tra due corpi, ma una manifestazione della curvatura dello spazio-tempo causata dalla presenza di massa-energia. Più è grande la massa-energia di un corpo, più curva lo spazio-tempo intorno a sé, e più influenza il moto degli altri corpi vicini. Questo significa che anche la luce, che non ha massa ma ha energia, subisce gli effetti della gravità e si curva seguendo la geometria dello spazio-tempo.

La relatività generale ha avuto enormi successi nel descrivere fenomeni come il moto dei pianeti nel sistema solare, la deflessione della luce stellare da parte del Sole, il ritardo del tempo tra due orologi posti a diverse altezze, le onde gravitazionali generate dalla collisione di buchi neri o stelle di neutroni, i buchi neri stessi e il Big Bang, l'origine dell'universo. Tuttavia, la teoria non è ancora completa e presenta alcune difficoltà nel conciliarsi con la meccanica quantistica, la teoria che governa il mondo delle particelle subatomiche. Per questo motivo, molti fisici sono alla ricerca di una teoria più generale che possa unificare la gravità con le altre forze fondamentali della natura.

domenica 4 giugno 2023

Samantha Cristoforetti a Etna Comics, 3 giugno 2023 (intervista)

"Non accettate di non capire la matematica!"

Un'ospite eccellente all'Etnacomics del 3 giugno 2023: Samantha Cristoforetti! In questo filmato fatto da me potete vedere una piccola parte dell'intervista alla famosa astronauta. Ascoltate bene fino alla fine perché in questa intervista Astrosamantha dice cose molto interessanti riguardo alla conoscenza della matematica e delle materie scientifiche in generale.



Buona visione e buon ascolto.



venerdì 2 giugno 2023

Le meraviglie della meccanica quantistica

La meccanica quantistica è una delle branche più affascinanti e misteriose della fisica. Si occupa di studiare i fenomeni che avvengono a livello subatomico, dove le leggi della fisica classica non sono più valide. In questo post, voglio condividere con voi alcune delle meraviglie della meccanica quantistica che mi hanno sempre colpito e incuriosito.



- Il principio di indeterminazione di Heisenberg: secondo questo principio, non è possibile misurare contemporaneamente con precisione la posizione e la velocità di una particella. Più si cerca di determinare una di queste grandezze, più l'altra diventa incerta. Questo significa che il comportamento delle particelle è intrinsecamente probabilistico e non deterministico.



- L'entanglement quantistico: questo fenomeno consiste nel fatto che due o più particelle possono essere legate tra loro in modo tale che lo stato di una influenzi lo stato dell'altra, anche se sono separate da una grande distanza. Questo implica che esista una sorta di comunicazione istantanea tra le particelle, che viola il principio di causalità e il limite della velocità della luce.



- Il gatto di Schrödinger: questo è un famoso esperimento mentale ideato dal fisico Erwin Schrödinger per illustrare il paradosso della meccanica quantistica. Si immagina di mettere un gatto in una scatola chiusa, insieme a una sorgente radioattiva e a un meccanismo che rilascia del veleno se viene rilevata una particella radioattiva. Secondo la meccanica quantistica, la particella radioattiva può essere sia decaduta che non decaduta fino a quando non viene osservata. Di conseguenza, il gatto sarebbe in uno stato sovrapposto di vivo e morto fino all'apertura della scatola.



martedì 16 maggio 2023

L'unificazione tra relatività generale e meccanica quantistica

L'unificazione tra relatività generale e meccanica quantistica è uno dei grandi sogni della fisica moderna. Si tratta di trovare una teoria che possa descrivere sia il mondo dei fenomeni macroscopici, come la gravità e la curvatura dello spazio-tempo, sia il mondo dei fenomeni microscopici, come le particelle elementari e le loro interazioni. Queste due teorie, infatti, sono incompatibili tra loro e non riescono a spiegare alcuni aspetti fondamentali della realtà, come il comportamento della materia e dell'energia nelle condizioni estreme di un buco nero o del Big Bang.

Perché sono incompatibili? La relatività generale è una teoria classica, che assume che lo spazio e il tempo siano continui e deterministici, ovvero che si possano misurare con precisione assoluta e che gli eventi siano legati da relazioni di causa-effetto. La meccanica quantistica, invece, è una teoria probabilistica, che assume che lo spazio e il tempo siano discreti e indeterministici, ovvero che abbiano dei limiti alla loro divisibilità e che gli eventi siano soggetti al principio di indeterminazione. Questo principio afferma che non si può conoscere contemporaneamente con precisione la posizione e la quantità di moto di una particella, ma solo la probabilità di trovarla in una certa regione dello spazio.

Queste due visioni della realtà sono in contrasto tra loro e non si riescono a conciliare in una sola teoria. Ci sono stati diversi tentativi di unificare la relatività generale e la meccanica quantistica, come la teoria delle stringhe, la gravità quantistica a loop, la geometria non commutativa e altre. Tuttavia, nessuna di queste teorie è stata ancora confermata sperimentalmente o matematicamente. Si tratta di ipotesi molto sofisticate e complesse, che richiedono nuove dimensioni dello spazio-tempo, nuove particelle o nuove simmetrie.

L'unificazione tra relatività generale e meccanica quantistica è quindi una sfida aperta per la fisica del XXI secolo. Se riuscissimo a trovare una teoria del tutto, potremmo avere una comprensione più profonda della natura e delle sue leggi. Potremmo anche rispondere a domande fondamentali come: cosa c'è oltre l'orizzonte degli eventi di un buco nero? Cosa è successo prima del Big Bang? Esiste una realtà oggettiva o dipende dall'osservatore? Queste sono domande che affascinano non solo i fisici, ma anche i filosofi e i curiosi.

domenica 9 ottobre 2022

Perché un numero elevato a zero fa uno? (video)

In questo filmato potete vedere una breve spiegazione del perché un qualsiasi numero elevato a zero da come risultato sempre uno. Buona visione a tutti.



domenica 7 agosto 2022

Il paradosso del futuro, la relatività e la preveggenza

Esiste un legame tra il noto “paradosso del futuro” (per la prima volta citato da Aristotele), la teoria della relatività e la capacità (presunta) di prevedere il futuro? Cercherò di rispondere al quesito nel modo più semplice possibile.


Il paradosso del futuro si potrebbe spiegare in questo modo: supponiamo che di sabato formuliamo questa frase: “domenica la mia squadra del cuore vince la partita”. Questa affermazione non sappiamo se è vera o falsa di sabato, ma la domenica la partita viene disputata e, ad esempio, la squadra vince. La frase risulta vera, ma se è vera di domenica, doveva essere vera anche di sabato! Questa cosa sembra ovvia e innocua, ma non lo è, perché ha un significato molto profondo e cioè significa che il futuro è già scritto…

Questo risultato è una conseguenza di due principi fondamentali della logica noti come “principio di bivalenza”, che afferma che una proposizione non può essere contemporaneamente sia vera che falsa, e il “principio del terzo escluso” (tertium non datur) che stabilisce che una sola tra la proposizione e la sua negazione deve essere vera. Nell’esempio di prima la proposizione "domenica la mia squadra del cuore vince la partita” deve essere o vera o falsa (terzo escluso), non può essere sia vera che falsa, anche se apparentemente saremmo portati a pensare che prima di aver disputato la partita potrebbe essere così, ma il principio di bivalenza e del terzo escluso non lo consentono, quindi se dopo la partita sappiamo che, ad esempio, è vera, allora doveva essere vera fin dall’inizio. Si potrebbe pensare che il principio del terzo escluso e di bivalenza non siano poi così importanti e ci potremmo rinunciare dicendo che alcune proposizioni siano sia vere che false nello stesso tempo, ma questa rinuncia non è per niente facile perché renderebbe tutto estremamente arbitrario.


Tuttavia questo ragionamento è solo un ragionamento logico molto astratto e si potrebbe pensare che potrebbe essere solo un gioco di logica, ma che nella realtà le cose stanno diversamente. Dopotutto solo il passato è già scritto, ma il futuro è tutto da decidere. La nostra sensazione (o dovremmo dire il nostro preconcetto) è che il futuro non può essere già scritto e che pensare che tutto sia già predestinato sia riduttivo, lesivo della nostra libertà e contro il nostro concetto di libero arbitrio. Il problema è: siamo sicuri che la libertà e il libero arbitrio, così come li abbiamo sempre concepiti, non siano solo dei preconcetti? Non potrebbero essere proprio la libertà e il libero arbitrio i concetti da riformulare?


Come se non bastasse non c’è solo il paradosso del futuro che ci suggerisce che il futuro è già scritto, ma c’è anche una teoria scientifica che arriva esattamente alla stessa conclusione: la teoria della relatività! Vediamo perché la relatività ci mostra che il futuro è già deciso.

La relatività ci mostra come il concetto di eventi simultanei non è più assoluto, perché se per un osservatore due eventi sono simultanei, per un altro osservatore in moto non lo sono più e per un altro osservatore ancora che si muove in modo diverso addirittura l’ordine degli eventi può invertirsi. Il passato, il presente e il futuro sono un blocco unico in uno spazio a quattro dimensioni. Un evento che è nel futuro di un osservatore che chiamiamo Alice può essere nel passato di Bob, e poiché il passato di Bob non è modificabile, non è modificabile nemmeno il futuro di Alice. Da questo esempio, molto semplificato, si deduce che anche la relatività ci mostra come il futuro, come noi lo sperimentiamo, non è modificabile ed è già scritto.

Tutto questo che conseguenze ha sul nostro concetto di libero arbitrio e di responsabilità? Su questo sono già stati scritti fiumi di parole, ma evidentemente su questi argomenti, che sono più filosofici e morali che scientifici, bisogna sicuramente cominciare a mutare paradigma.


A questo punto, dopo avere visto che la logica ci suggerisce che il futuro è già scritto, la teoria della relatività ce lo conferma, arriviamo all’ultima parte di questo nostro breve dialogo: la preveggenza. Cos’è la preveggenza? Sappiamo che è la presunta capacità di prevedere il futuro. Ormai è considerata da tutti dominio della pseudoscienza e sembra una credenza tipica di persone che pensano con particolari bias cognitivi. Di solito la preveggenza è un fenomeno indagato dagli psicologi, alla stregua di uno stile di pensiero distorto. Dai risultati discussi in precedenza, però, la preveggenza non ha alcun modo di esistere, confermando le ricerche degli psicologi con buona pace dei credenti nei fenomeni del paranormale. Anche in questo caso facciamo un esempio semplice. Se con i miei “poteri” di preveggenza prevedo che domani avrò un contrattempo, ad esempio faccio tardi prendendo una strada affollata e perdo l’aereo, allora potrei evitare di prendere quella strada e così potrei cambiare il futuro… Ma… il futuro non si può cambiare! Quindi non può esistere un simile “potere” che mi permetterebbe invece di cambiare il futuro a piacimento. Pertanto la preveggenza è effettivamente solo un bias cognitivo di persone che hanno la propensione al pensiero paranormale.


E se un giorno si scoprisse che la preveggenza esiste? Beh, a questo punto dovremmo rinunciare alla correttezza della teoria della relatività e persino alla validità del principio del terzo escluso e del principio di bivalenza. Se la rinuncia alla teoria della relatività non è una gran tragedia, perché comunque, come tutte le teorie della fisica, prima o poi si scoprirà che è inadeguata a descrivere fenomeni ancora non scoperti e quindi si dovrà ampliare o riformulare, ma la rinuncia ai principi basilari della logica non è così indolore. Pensare che ogni proposizione può essere sia vera che falsa ci potrebbe portare ad una nuova epoca di arbitrarietà dove ad avere ragione sarà sempre fatalmente il più forte.


domenica 6 gennaio 2019

Come oscilla un pendolo su Giove? (filmato)

In questo filmato possiamo vedere una bella rappresentazione di come cambia il periodo di oscillazione di un pendolo semplice in vari corpi celesti conosciuti. E vedremo che le sorprese non mancano.

Il periodo di oscillazione di un pendolo semplice dipende dalla lunghezza del pendolo (più precisamente dalla lunghezza del filo inestensibile di massa nulla) e dipende anche dall'accelerazione di gravità. Se potessimo portare un pendolo semplice di lunghezza pari ad un metro sugli altri pianeti, essendo diversa l'accelerazione di gravità, sperimenteremmo dei periodi di oscillazione diversi da quelli misurati sulla Terra. Sulla Luna, ad esempio, l'oscillazione sarebbe ben più lenta di quella sulla Terra, mentre su Giove (g = 24,79 m/s2) sarebbe sensibilmente più veloce.

Se, idealmente, fosse possibile portare lo stesso pendolo sulla superficie del Sole, il periodo di oscillazione sarebbe ancora più veloce.

Come esempio estremo, nel filmato qui presentato, si immagina di portare il pendolo sulla superficie di una stella di neutroni. Qui la forza di gravità è talmente forte da fare oscillare il pendolo ad una velocità folle! In realtà in un simile corpo celeste la forza di gravità è talmente alta da stritolare qualsiasi oggetto tipico della nostra quotidianità.

Buona visione del filmato "Come oscilla un pendolo su Giove?".


mercoledì 2 gennaio 2019

L'effetto Tunnel: uno dei fenomeni più strani della Fisica

In Fisica Quantistica si descrivono e si verificano alcuni fenomeni che si possono considerare "strani" In realtà non sono strani in senso letterali, ci appaiono strani solo perché si allontanano un po' troppo dalla nostra esperienza quotidiana. Cosa pensereste se qualcuno passasse attraverso un muro senza rompere il muro e senza farsi male? Come se fosse un fantasma! Però le particelle elementari si comportano proprio in questa maniera e questo avviene perché le particelle elementari non sono "palline" fatte di "qualcosa", ma sono appunto "elementari" e sfuggono alla fenomenologia propria degli oggetti della nostra quotidianità.

In questo filmato possiamo vedere una descrizione semplice e divertente del fenomeno quantistico chiamato Effetto Tunnel, un fenomeno "strano", ma che in realtà strano non è.

Buona visione a tutti.


sabato 22 dicembre 2018

Primo teorema di Euclide

Una dimostrazione del primo teorema di Euclide condotta in maniera chiara e semplice. Un video interessante per tutti coloro che desiderano capire la dimostrazione di questo teorema fondamentale della Geometria.

Buona visione a tutti.


lunedì 17 dicembre 2018

E=mc2, spiegazione semplice

La famosa formula di Einstein E=mc2 è talmente famosa che viene stampata anche nelle magliette. Il significato di questa formula è molto profondo e mostra che c'è un'equivalenza tra massa ed energia, cioè che massa ed energia sono fondamentalmente la stessa cosa.

E' possibile dimostrare questa formula in maniera semplice? In realtà si può fare, partendo dai principi di conservazione e dalle leggi dell'elettromagnetismo.

In questo filmato possiamo vedere spiegata questa dimostrazione.

Buona visione a tutti.


domenica 9 dicembre 2018

I paradossi della meccanica quantistica (video lezione)

La meccanica quantistica è una delle teorie scientifiche che hanno avuto più successo. Ovviamente ha suscitato anche accese discussioni e ha fatto storcere il naso a più di uno scienziato. In questo video possiamo vedere illustrati alcuni importanti paradossi ed effetti "strani" della meccanica quantistica. Si fa una introduzione spiegando l'interpretazione di "Copenhagen". Si parla poi dell'effetto Bohm-Aharonov come paradosso della non-localitaà e il paradosso di Einstein-Podolsky-Rosen, la disuguaglianza di Bell, il moto accelerato senza campo e la realtà del potenziale magnetico, alcuni punti di vista alternativi alla interpretazione usuale dei fenomeni quantistici.

Buona visione a tutti.


martedì 4 dicembre 2018

La storia della crittografia

Come si possono rendere segrete e incomprensibili agli altri le nostre comunicazioni più importanti? E' stato un problema sin dall'antichità quando, durante le guerre, si doveva mantenere il segreto sui piani militari per non farli scoprire al nemico.

In realtà la storia della crittografia intreccia l'evoluzione delle strategie militari, la matematica e la nascita dei primi computer.

Per questo possiamo dire che è una delle storie più affascinanti della scienza e coinvolge tantissimi uomini che hanno avuto idee geniali, che hanno sofferto, hanno vinto e hanno perso.

Buona visione del documentario.


Cosa sono le onde gravitazionali? (video)

I buoni divulgatori si vedono dalla loro capacità di rendere semplici le nozioni più complicate. Anche le famose onde gravitazionali sono un argomento complesso, ma c'è sempre qualcuno che è in grado di rendere l'argomento più facile da comprendere e per fortuna non mancano divulgatori italiani che hanno questo gradito talento.

In questo filmato, che dura solo 9 minuti, si cerca di dare una breve spiegazione di cosa sono le onde gravitazionali. Io credo che sia sufficiente per avere un'idea di questa grande e recente scoperta. Le onde gravitazionali furono previste teoricamente da Albert Einstein più di 100 anni fa e avere dimostrato che esistono realmente è una delle numerose grandi conquiste dell'intelletto e dell'ingegno umano.

Vi lascio a questo interessante video.

Buona visione.


sabato 1 dicembre 2018

La meccanica quantistica spiegata in 10 minuti (video).

La Meccanica Quantistica è una delle teorie moderne più affascinanti, controverse, controintuitive e feconde che l'uomo abbia mai formulato. Appare anche abbastanza complessa anche dal punto di vista matematico. E' possibile per un "profano" capirci qualcosa? Ovviamente la risposta è affermativa. Proviamo a guardare insieme questo video e vediamo se qualcosa ci entra in testa?

Buona visione a tutti.


sabato 2 dicembre 2017

Moltiplicazione giapponese (video)

Noi giorni scorsi ne hanno parlato persino nei telegiornali, perché un video che illustrava il metodo per fare la “moltiplicazione giapponese” era diventato virale e aveva fatto 100 milioni di visualizzazioni in poche settimane. In realtà questo metodo non è esattamente un novità e secondo me non è nemmeno un metodo particolarmente efficiente e veloce, se non in pochi casi particolari. Ecco un filmato che spiega come fare la “moltiplicazione giapponese”. Questo metodo per moltiplicare i numeri usa linee che si intersecano e consiste nel contare i punti di intersezione per trovare il risultato finale della moltiplicazione. In realtà non credo che sia un metodo molto veloce e semplice, soprattutto se si moltiplicano numeri che hanno molte cifre alte, ad esempio numeri che sono pieni di 8 e 9. Negli esempi che si trovano online infatti gli esempi sono fatti moltiplicando numeri con piccole cifre, ad esempio 123 x 321. Ma se si prova a fare una moltiplicazione come 987 x 998, ci si ritrova subito con un groviglio di linee in cui andare a contare i punti di intersezione non è per nulla facile. In ogni caso è utile conoscerlo per divertirsi anche un po’ a giocare.

Buona visione del video.

L’induzione elettrostatica e la polarizzazione

Consideriamo una bacchetta di plastica, una sfera di metallo e un filo isolante che sostiene la sfera di metallo. Se strofiniamo la bacchetta di plastica con un panno e la avviciniamo alla sfera di plastica vedremo che sfera e bacchetta si attraggono. Questa attrazione avviene anche se la sfera di metallo è scarica elettricamente.

Com’è possibile che un corpo carico ne attragga uno scarico?

La risposta è nella legge di Coulomb. La bacchetta di plastica ha una carica elettrica negativa, quando si avvicina alla sfera ne respinge gli elettroni, che sono liberi di muoversi all’interno del metallo, e si spostano dalla parte opposta della sfera. Così la parte della sfera più vicina alla bacchetta rimane carica positivamente, mentre la superficie più lontana diventa negativa. Per la legge di Coulomb, però, l’attrazione tra cariche vicine è maggiore di quella tra cariche lontane. Ecco perché la sfera è attratta dalla bacchetta.

Questo in realtà non è un fenomeno di elettrizzazione vero e proprio, perché nel complesso la sfera di metallo rimane elettricamente neutra com’era all’inizio. La bacchetta infatti non trasferisce una carica sulla sfera ma spinge, cioè induce, le sue cariche interne a redistribuirsi in maniera tale che alcune parti della sfera risultino localmente elettrizzate.

Questo fenomeno si chiama induzione elettrostatica.

Non è un fenomeno irreversibile. Per tornare nelle condizioni iniziali, infatti, basta allontanare la bacchetta. Subito allora le cariche positive e negative presenti sulla sfera tornano a mescolarsi. L’induzione elettrostatica si verifica grazie alla libertà di movimento degli elettroni all’interno di un materiale conduttore.

Però anche un materiale isolante, come la carta, può essere attirato da un corpo carico. Una penna di plastica elettrizzata per strofinio, per esempio, riesce ad attrarre piccoli pezzetti di carta.

In questo caso avviene il fenomeno chiamato polarizzazione. Gli elettroni della carta che sono più vicini alla penna sentono una forza che li respinge e anche se sono poco liberi di muoversi nelle molecole, una piccola ridistribuzione di carica si crea ugualmente. Il risultato è che nel complesso le cariche di segno opposto sono più vicine tra loro, mentre quelle dello stesso segno sono più distanti. Ecco perché i pezzettini di carta sono attratti dalla penna.

Il fenomeno della polarizzazione spiega come mai l’intensità della forza di Coulomb si riduce quando le cariche sono poste in un materiale isolante. Una carica positiva attrae verso di se gli elettroni delle molecole che la circondano, perciò risulta schermata dallo strato di cariche negative e interagisce con altre cariche più debolmente di quanto farebbe nel vuoto. Il valore della costante dielettrica di un materiale è dunque una misura di quanto quel materiale si polarizza in presenza di cariche elettriche.

Nel seguente filmato potete vedere una animazione di quanto detto nel testo precedente. Buona visione a tutti.

domenica 26 novembre 2017

Teorema di Pitagora: spiegazione facile e veloce (video)

Nel 2009 in questo blog pubblicai un post sul teorema di Pitagora che è esattamente questo: Teorema di Pitagora. Ecco come impararlo facilmente. Divenne uno dei post più visitati di questo blog. A distanza di 8 anni ho pensato di rinnovare il “filone” del teorema di Pitagora segnalando un altro dei numerosi filmati che promettono di spiegare questo teorema in maniera facile e veloce.

Vi lascio subito al filmato:

Buona visione a tutti.

Il principio di Pascal (video)

Osserviamo un palloncino gonfiato con elio che è un gas di densità inferiore rispetto alla densità dell’aria. Questo palloncino è posto all’interno di un cilindro pieno d’aria ed è chiuso ermeticamente da un pistone che è libero di scorrere. Se spingiamo in basso il pistone vediamo che il palloncino si restringe uniformemente, questo significa che il suo volume diminuisce, ma la sua forma non cambia. L’aumento di pressione esercitato dal pistone sull’aria contenuta nel cilindro si è dunque “trasmesso” in modo uniforme su tutta la superficie del palloncino, non solo sulla parte rivolta verso il pistone. Questo risultato è una dimostrazione della validità del principio di Pascal che si può enunciare nel seguente modo:

La pressione esercitata su una qualunque superficie a contatto con un fluido, sia esso un liquido o un gas, si trasmette con la stessa intensità su tutte le altre superfici a contatto con il fluido”.

Nel seguente filmato potete vedere l’animazione del pistone e del palloncino in questo esperimento che dimostra il principio di Pascal.

Buona visione.

Space X Starship: il nuovo tentativo di lancio del 18 novembre 2023.

Vediamo un frammento della diretta del lancio dello Starship del 18 noembre 2023. Il Booster 9, il primo stadio del razzo, esplode poco dopo...