Passa ai contenuti principali

Spettroscopia: il metodo con cui possiamo analizzare persino la composizione chimica delle stelle.

 

La spettroscopia si occupa dell'esame e dell'interpretazione degli spettri e delle molecole allorché la materia viene opportunamente eccitata. Uno spettro rappresenta un insieme di radiazioni, emesse o assorbite dagli atomi o dalle molecole, distribuite ed espresse in funzione delle lunghezze d'onda o delle frequenze. L'intero spettro elettromagnetico viene in genere suddiviso in alcune zone che comprendono quelle componenti che all'incirca presentano le stesse caratteristiche di produzione e di rivelazione.

Ci occuperemo dello spettro riguardante la regione del visibile, ossia delle radiazioni corrispondenti all'intervallo di lunghezze d'onda più o meno comprese tra 400 e 700 nm (nanometri) nel vuoto.

Lo studio spettroscopico dell'emissione e dell'assorbimento della luce da parte degli elementi è stato uno dei campi di ricerca fondamentali per lo sviluppo delle conoscenze sulla struttura atomica della materia.
Storicamente questa disciplina ebbe la sua origine allorché Newton mise sperimentalmente in evidenza la scomposizione della luce bianca nelle componenti monocromatiche per mezzo di un prisma trasparente.

Solamente dopo il 1850 la spettroscopia diventò una branca ufficiale della ricerca scientifica; ciò avvenne quando Bunsen e Kirchhoff notarono che la frequenza delle righe spettrali, già osservate e classificate da Fraunhofer negli spettri ottici, poteva caratterizzare la natura chimica degli elementi.
Mediante l'analisi spettroscopica i due ricercatori tedeschi non solo scoprirono nuovi elementi (il rubidio e il cesio), ma indicarono la metodologia per studiare la composizione chimica della materia extraterrestre accessibile all'indagine umana attraverso le radiazioni inviate dalle stelle.
Il primo importante risultato, dedotto dallo studio della luce omessa dai corpi celesti, è rappresentato dalla scoperta, fatta da Lockyer nella radiazione solare, di alcune righe spettrali prodotte ara un elemento ancora sconosciuto sulla Terra. Questo elemento, contenuto inizialmente presente solo nel Sole e pertanto chiamato elio (Hélios = Sole), venne successivamente trovato da Ramsay fiche sul nostro pianeta.

Gli spettri, di solito vengono classificati in:
- spettri di emissione,
- spettri di assorbimento.

A loro volta, sia quelli dell'uno sia quelli dell'altro tipo si dividono in:
- spettri continui,
- spettri di righe,
- spettri di bande.

 

Spettro di emissione

Lo spettro di emissione si ha quando le radiazioni ottiche emesse da una sorgente opportunamente eccitata vengono direttamente disperse nelle componenti monocromatiche mediante lo spettroscopio, chiamato anche spettrometro se munito di una scala graduata da utilizzare per la misura della lunghezza d'onda della radiazione.
A seconda della materia eccitata si può ottenere:


- uno spettro continuo, se è formato da un insieme, più o meno esteso, di lunghezze d'onda. Nel campo del visibile si presenta con una successione continua di colori che dal rosso si estendono fino al violetto. Viene emesso soprattutto dalla materia in fase solida o in fase liquida quando si riscalda fortemente;

spettro continuo


- uno spettro di righe, se è formato da una sequenza discontinua, più o meno numerosa, di righe brillanti e ben separate sopra un fondo scuro. Indipendentemente dalla tecnologia di eccitazione, ogni atomo di un elemento portato allo stato aeriforme presenta uno spettro di righe che caratterizza la natura della materia emittente;

spettro di righe


- uno spettro di bande, se è formato da una successione assai fitta di righe che si addensano in corrispondenza di certe lunghezze d'onda. È originato soprattutto dai gas e dai vapori caratterizzati da molecole poliatomiche i cui atomi sono chimicamente legati.

spettro di bande

 


Spettro di assorbimento

Questo tipo di spettro si ottiene interponendo sul cammino della radiazione in grado di originare uno spettro continuo una sostanza, in genere un gas o un vapore, che assorbe, in corrispondenza di certe lunghezze d'onda più o meno estese, alcune componenti che l'attraversano. Si origina così una specie di arcobaleno, sovrapposto al quale le variopinte righe che caratterizzano in emissione la sostanza in fase aeriforme si trasformano, in assorbimento, in una sequenza di righe scure localizzate nella stessa posizione (frequenza) delle prime.

 


Spettro atomico

Poiché mediante l'analisi spettrale è possibile individuare l'elemento eccitato, la frequenza o la lunghezza d'onda delle righe spettrali rappresentano una caratteristica fondamentale dell'elemento emittente. Per esempio, l'idrogeno emette una serie di righe aventi sempre la stessa lunghezza d'onda, il sodio un'altra successione, il magnesio ancora un'altra, e così via. Non esistono spettri comuni a due elementi distinti. È pur vero che uno stesso elemento può emettere spettri diversi (righe che appaiono, mentre altre scompaiono), ma ciò deriva dalla modalità e dal grado di eccitazione. Comunque, ogni spettro di righe è sempre caratteristico dell'elemento in quelle condizioni di eccitazione.
Per mezzo della spettroscopia si può pertanto fare l'analisi degli elementi, nel senso di riconoscere la presenza di un elemento in un miscuglio di più altri.
Rispetto alle tradizionali metodologie chimiche, questo tipo di analisi possiede il vantaggio di poter utilizzare piccolissime quantità di materia. In genere, per riconoscere la presenza di un elemento non è necessario identificare tutte le righe del suo spettro: basta infatti evidenziare alcune delle sue righe più intense per caratterizzare l'elemento in esame.
Per mezzo dell'analisi spettroscopica è possibile riconoscere oltre agli elementi chimici, caratterizzati da spettri a righe, anche certi composti chimici condotti in fase aeriforme che presentano uno spettro a bande.
Confrontando gli spettri in emissione e in assorbimento, forniti da una stessa sostanza allo stato aeriforme, si nota una corrispondenza, rilevata per la prima volta da Kirchhoff, comunemente chiamata principio d'inversione dello spettro: ogni sostanza aeriforme è infatti capace di assorbire quelle radiazioni che nelle stesse condizioni fisiche è anche capace di emettere. A righe brillanti in emissione corrispondono infatti in assorbimento righe scure localizzate sullo sfondo dello spettro luminoso continuo.



Per esempio, la luce proveniente dal Sole presenta uno spetto di assorbimento: sul fondo continuo si notano moltissime righe nere, dette righe di Fraunhofer.
La parte interna del Sole infatti fornisce uno spettro continuo; però, poiché la luce attraversa anche la cromosfera solare e l'atmosfera terrestre, per assorbimento si forma sullo spettro continuo una numerosa successione di righe oscure, le quali permettono di individuare gli elementi aeriformi della cromosfera. Le righe telluriche, a causa dei pochi elementi dell'atmosfera terrestre, sono infatti trascurabili rispetto alle righe solari.
Anche lo spettro a righe della luce emessa da una stella può rivelare, se opportunamente osservato, la natura chimica e l'abbondanza relativa degli elementi che si trovano sulla superficie esterna del corpo celeste.

_____________________

Commenti

Post popolari in questo blog

Perché un numero moltiplicato per zero fa zero?

Ad alcuni potrà sembrare una domanda banale, ma non potete immaginare quante sono le persone che me lo chiedono e che prima di trovare una risposta degna di questo nome si scervellano senza successo. Evidentemente il problema non viene percepito come così banale. In realtà il “ mistero ” ha una risposta semplicissima. Per capire perché un numero qualsiasi (diverso da zero) moltiplicato per zero da come risultato zero , possiamo ricorrere ad un esempio . Come prima cosa dobbiamo pensare che i numeri sono degli “ insiemi ” di oggetti . Ad esempio il numero 5 lo possiamo immaginare come un insieme formato da 5 caramelle , o da 5 biglie, o da 5 oggetti qualsiasi. Se dobbiamo moltiplicare il numero 5 per il numero 3, significa quindi che dobbiamo prendere 3 insiemi formati da 5 caramelle. Se contiamo tutte le caramelle che adesso abbiamo, troviamo il numero 15. Occorre notare che anche se prendiamo 5 insiemi da 3 elementi, otteniamo 15 elementi. infatti 3x5=15, ma anche 5x3=15, come ci ...

Onde trasversali e onde longitudinali

  Un’onda che si forma muovendo l’estremità di una lunga molla è un esempio di onda elastica . Essa si chiama così perché si propaga grazie alle proprietà elastiche del mezzo materiale in cui ha origine. Onda trasversale . Un’onda elastica si può generare spostando alcune spire di una molla in direzione perpendicolare rispetto alla molla stessa. Per esempio, possiamo spostare una delle prime spire per poi rilasciarla: accade così che le spire contigue, sollecitate dalla prima, si mettano anch’esse in movimento, spostandosi trasversalmente rispetto alla direzione di propagazione dell’onda . Il processo poi continua, consentendo all’onda di investire spire sempre più lontane. Onda longitudinale . E’ possibile perturbare la molla anche in un altro modo e cioè avvicinando e poi rilasciando alcune spire di una lunga molla. Si ha così una regione di spire compresse che si sposta lungo la molla, seguita da un’altra zona di spire rade: ciascuna spira, quando è investita dalla pert...

Problemi WiFi con OS X Lion. La soluzione definitiva!

Sono tantissimi gli utenti che, dopo l'installazione del nuovo sistema operativo OS X Lion , hanno avuto gravi problemi con la connessione WiFi . Di solito il problema si presenta come una difficoltà di connessione con il router: la connessione dura pochi minuti e poi cade senza motivo. Su internet ci sono varie guide per cercare di risolvere il problema, ma nessuno di questi rimedi funziona veramente . Per fortuna qualcuno su internet ha trovato la soluzione definitiva : sostituire i driver WiFi della versione di OS X 10.7.0 (Lion) con quelli della versione 10.6.4 (Leopard) . In questo modo i problemi di connessione WiFi con Lion si risolvono completamente in pochi minuti. Come faccio a saperlo? Con il mio iMac 21,5 il metodo ha funzionato alla perfezione! :-) ( update : oggi 28 settembre 2011 ancora il wifi sta funzionando!) Ecco cosa bisogna fare ( attenzione che tutto ciò che farete da questo momento in poi è A VOSTRO RISCHIO E PERICOLO !) 1) Scaricare l...