lunedì 28 febbraio 2011

La storia del pianeta Terra

 

Per più di 4,5 miliardi di anni una serie di eventi eccezionali hanno sconvolto la Terra. Impatti di violenza inaudita, eruzioni colossali e alluvioni catastrofiche ne hanno flagellato senza sosta la sua superficie. Quella che vi presento in questa serie di filmati è l’incredibile storia del pianeta Terra. Si tratta di uno spettacolo lungo 4 miliardi di anni, che può essere riassunto in poche, ma meravigliosamente suggestive, ore.

In realtà la storia del nostro pianeta è ancora ricca di misteri. La sua evoluzione si presenta come un enigma inspiegabile in cui ogni indizio del passato è stato accuratamente occultato. Ovviamente c’è qualcuno che sa dove cercare queste “tracce rivelatrici”.

A questo punto, sperando di avervi affascinati con questa presentazione Occhiolino, vi lascio guardare questo bellissimo documentario.

Buona visione.

L’incredibile storia del pianeta Terra

Il sistema operativo

 

Il sistema operativo è un software di sistema che agisce da intermediario tra l’utente e l’hardware del computer. È costituito da un insieme di programmi essenziali per il corretto funzionamento di un computer e delle sue periferiche.

sistema operativo

Facciamo l’esempio di alcuni tipi di sistemi operativi

Sistemi Batch

Sono i primi sistemi operativi comparsi sul mercato. Gli elaboratori del periodo erano capaci di eseguire e portare a termine un solo compito alla volta. Questo compito, chiamato job, veniva eseguito con una serie di processi automatici che non richiedevano l’intervento dell’utente. Tutti gli altri job venivano messi in attesa, la loro elaborazione iniziava solo quando il processo precedente terminava.

Tra un lavoro e un altro poteva trascorrere molto tempo, per questo si lasciava che l’elaboratore svolgesse tutto in automatico.

Gli elaboratori del periodo avevano un costo molto alto, impossibile per un singolo utente. Solo grandi società o istituzioni potevano permettersene l’acquisto. Esistevano pochi sistemi, ma utilizzati da più persone. Ancora oggi con il termine batch ci riferiamo ai processi svolti automaticamente dal pc.

Sistemi monoutente

I sistemi monoutente nascono insieme al pc. Ora il computer non ha più un prezzo proibitivo, di conseguenza l’uso non è più condiviso, ma personale. I sistemi monoutente permettevano il lancio di un solo programma alla volta. Questo programma veniva definito programma principale, perché a volte poteva essere accompagnato da una serie di utility.

Queste utility venivano lanciate periodicamente attraverso un timer hardware che interrompeva il processo principale per gestire operazioni in background. Il più conosciuto tra i sistemi operativi di questo tipo fu sicuramente l’Ms-Dos della Microsoft.

Sistemi multiprogrammati

Sono i sistemi operativi di tipo moderno. Rispetto ai precedenti vi sono due importanti differenze: 1) il sistema operativo riesce a gestire due o più programmi in esecuzione su uno stesso processore; 2) interazione diretta tra utente e programma.

Questa gestione multi programmata è in realtà un’illusione, perché il processore continua a lavorare su un solo programma per volta.

La CPU si dedica ad un programma per una certo intervallo di tempo, detto time slot, poi passa al programma successivo. Il passaggio si chiama context switch.

Questo passaggio è invisibile all’occhio umano perché avviene in una frazione di secondo. Il sistema operativo sfrutta le pause, che per il pc sono lunghissime, tra un comando e l’altro dell’utente.

Il context switch è regolato da un timer hardware che manda il segnale elettrico di interruzione alla CPU. In questo modo comanda alla CPU di passare la programma successivo. Il sistema operativo gestisce l’invio del segnale di interruzione alla CPU in base alle applicazioni in esecuzione.

Questo meccanismo viene chiamato time sharing. La durata del context switch non dipende da quali e quanti processi siano in esecuzione, ma ha un valore fisso. Maggiore è il numero di processi attivi e maggiore è il tempo che il processore impiega a completarli tutti. Questo oggi non è più un problema, perché la nuova generazione di pc è dotata di più processori.

Avere più programmi in esecuzione può creare problemi di conflittualità, dato che tutti i programmi usano le medesime risorse. Il sistema operativo dovrà quindi evitare questi conflitti, stabilendo la priorità con cui i programmi in esecuzione possono accedere alle risorse. Di conseguenza non possiamo avere una stima esatta del tempo necessario per completare un processo.

Sistemi realtime

Un sistema operativo realtime è un sistema specializzato per il supporto di applicazioni software realtime. Questi sistemi vengono utilizzati prevalentemente in ambito industriale e comunque dove sia necessario che il sistema risponda entro tempi prestabiliti (ad esempio una catena di montaggio).

Un sistema operativo realtime non deve essere necessariamente veloce, l’importante è che sia prevedibile.

Sistemi distribuiti

Un sistema distribuito si differenzia da un sistema comune perché ha la capacità di lavorare con risorse presenti su altre macchine, connesse tramite bus o reti. Alla base di questi sistemi vi sono delle macchine definite server. I server hanno il compito di mettere a disposizione delle altre macchine hardware e software. Gli elementi da condividere sono installati o collegati direttamente al server. Le altre macchine vi accedono attraverso il server stesso.

Possiamo quindi condividere tra una rete di pc varie periferiche o applicazioni software.

In alcuni casi è il sistema operativo stesso ad essere condiviso. Questi vengono chiamati clustering.


La gestione dei processi e della memoria

Abbiamo già visto come un sistema operativo multi programmato permetta l’esecuzione, apparentemente simultanea, di più programmi tramite il meccanismo di time sharing. Questo meccanismo, però, nel caso in cui i programmi in esecuzione dipendano da un input utente, potrebbe portare a un forte rallentamento del sistema. Per evitare un rallentamento si sospende il time sharing per i processi in questione.

Questi programmi, insieme a tutti i processi in attesa, vengono messi in coda ed esclusi dal lavoro della CPU, congelati fino a quando non ricevono i dati in input o siano pronti.

Di conseguenza possiamo dire che ogni processo attraversa tre stati distinti:

1) STATO ATTIVO: si trova in questo stato il processo in elaborazione del processore.

2) STATO PRONTO: si trova in questo stato il processo che può essere eseguito ma che non è al momento in esecuzione.

3) STATO DI ATTESA: si trova in questo stato il processo che attende un dato dall’esterno ed è escluso dal time sharing. Avremo quindi in ogni istante un solo processo attivo per ogni processore, vari processi pronti a diventare attivi e uno o più processi in attesa di dati. Naturalmente il processo ha anche uno stato iniziale e uno conclusivo:

- STATO INIZIALE o disponibile. Il programma viene richiamato dall’hard disk e posto nella RAM, vengono anche assegnate le risorse necessarie all’esecuzione.

- STATO FINALE o terminato. Il programma viene chiuso e vengono liberate tutte le risorse ad esso assegnate.

Quando un processo è in attesa, rimane congelato aspettando i dati dall’esterno. Se l’attesa si prolunga, il programma viene tolto dalla RAM e messo nel disco rigido in “memoria virtuale”. Verrà riportato nella RAM nel momento in cui l’utente inserisce i dati.

Questo processo prende il nome di swap in è swap out e serve ad evitare di occupare tutto lo spazio della RAM con programmi in attesa.

Il passaggio di un processo da uno stato ad un altro può essere automatico oppure conseguente a dei precisi fattori.

Vi è un apposito processo detto scheduler che si occupa di questi passaggi di stato. In base al passaggio di stato, interviene uno scheduler preciso.

- Scheduler a lungo termine: disponibile e pronto

- Scheduler a medio termine: swap in e swap out

- Scheduler a breve termine: attivo – pronto


La gestione della memoria

Uno dei compiti principali di un sistema operativo è quello della gestione della memoria RAM.

Il sistema operativo si occupa di suddividere la memoria fisica esistente sul sistema in sezioni, anche dette partizioni, e di assegnare le partizioni stesse ai processi in esecuzione, in base alla necessità e alle richieste di ognuno.

Il sistema operativo si comporta come un allocatore di memoria. I processi non interagiscono direttamente con la memoria fisica.

I compiti di un gestore di memoria sono:

Protezione: le partizioni non possono essere assegnate a più processi contemporaneamente. Per evitare la sovrascrittura.

Rilocabilità e trasparenza: i processi devono funzionare indipendentemente dalla partizione a loro assegnata e non devono risentirne se questa viene cambiata durante l’esecuzione.

Frammentabilità: un’area di memoria assegnata ad un processo deve poter essere costituita da più partizioni anche non consecutive, ma viste sempre come tali da processo.

Condivisione: devono esistere aree di memoria condivise da più programmi accessibili in sola lettura. Questo serve per condividere porzioni di codice utilizzate da più applicazioni.

IL CICLO DI ALLOCAZIONE

Il ciclo di allocazione si svolge in due fasi:

1) Fase di allocazione: un processo richiede memoria. Il sistema operativo verifica se c’è un’area abbastanza grande disponibile e le eventuali priorità.

2) Fase di recupero e deallocazione: il sistema si riprende aree di memoria ora libere e le rimette a disposizione.

Questo sistema di allocazione e recupero funziona grazie ad una mappa delle allocazioni e una lista di blocchi liberi.

Esistono diversi tipi di modelli di allocazione che variano sia per il modo in cui è suddivisa la memoria fisica e sia per il modo di assegnazione. Indipendentemente dai modelli vi sono delle porzioni di memoria che non vengono assegnate ai processi utente:

- Area riservata dal sistema operativo per le proprie operazioni

- Area occupata dal sistema operativo stesso

- Allocazione statica

Prevede la divisione della memoria in partizioni di uguale dimensione. È un metodo veloce e semplice. Il sistema operativo non deve scegliere la porzione di memoria più adatta che comporta uno spreco di risorse.

- Allocazione dinamica

Vi sono partizioni di dimensioni diverse, scelte sulla base delle richieste dei processi in corso. È un metodo che comporta un rallentamento. Il sistema operativo deve scegliere la partizione più adatta alle richieste del processo dell’allocazione, ma permette di ridurre lo spreco di risorse.


domenica 27 febbraio 2011

Le zecche

 

Le zecche appartengono alla classe degli aracnidi e all’ordine degli acari, un gruppo enorme e diversificato di circa 300 famiglie. Di zecche se ne conoscono oltre 800 specie e 39 di queste vivono in Italia.

Le zecche sono parassiti, si nutrono di sangue che prelevano attaccandosi alla pelle di altri organismi viventi, quasi sempre vertebrati. Il loro ciclo biologico può interessare più animali ospiti a seconda della specie e delle condizioni climatiche. L’intero ciclo può durare da alcuni mesi ad alcuni anni.

Alcune zecche sono di dimensioni millimetriche, altre, dopo essersi nutrite, aumentano la loro massa iniziale fino a 100 volte! La loro lunghezza in questo caso può superare il centimetro.

Come si prendono le zecche?

Esse non aggrediscono le loro vittime saltando o volando, ma appostandosi alle estremità delle piante, lasciandosi cadere al passaggio dei loro ospiti.

Quanto sono pericolose le zecche per gli esseri umani?

Nel seguente filmato potete avere tutte le informazioni utili sulle zecche e su come combatterle:

http://www.rai.tv/dl/RaiTV/programmi/media/ContentItem-092da044-ea00-4870-a5e5-d28ad8cc5b25.html?p=0

Di seguito potete vedere il filmato parziale:

Le zecche

Lucertola campestre

 

La lucertola campestre (Podarcis sicula) è quella che possiamo facilmente trovare nei campi (lo dice il nome stesso Sorriso). Essa spesso convive con la lucertola muraiola (Podarcis muralis) e da essa si distingue per la parte ventrale di colore chiaro, la muraiola è generalmente più scura.

La lucertola campestre è il rettile più diffuso vivente in Italia. In questo breve filmato possiamo ascoltare alcune semplici informazioni riguardo alla lucertola campestre e anche riguardo alla lucertola muraiola.

Buona visione.

La lucertola campestre

sabato 26 febbraio 2011

Il galleggiamento

 

A molti sarà capitato di trovarsi in piscina o a mare e di provare a sollevare un amico immerso in acqua. Non può sfuggire la sensazione di quanto sia stato sorprendentemente facile.

Si può sollevare facilmente un amico immerso in acqua perché il suo corpo galleggia. Il galleggiamento di un corpo è dovuto alla capacità di un fluido di esercitare una forza diretta verso l’alto su un corpo immerso in esso. Infatti, quando un corpo è immerso ad esempio nell’acqua, l’acqua esercita su di esso una forza diretta verso l’alto, rendendo più facile sollevarlo. Questa forza, che agisce in direzione opposta alla gravità, è detta spinta di Archimede.

Il galleggiamento di un corpo in un fluido è strettamente collegato al rapporto tra le densità del corpo e del fluido.

Ricordiamo che la densità è definita come rapporto tra la massa di un corpo e il suo volume, quindi:

dove d è la densità, M è la massa e V è il volume.

L’unità di misura della densità quindi sarà Kg/m3 (chilogrammi al metro cubo). L’acqua, ad esempio, ha una densità di 1000 Kg/m3, mentre l’acciaio ha una densità di 7800 Kg/m3.

Se un corpo ha una densità inferiore a quella del liquido in cui è immerso galleggia. Viceversa, se la sua densità è superiore a quella del fluido, affonda. Quanto detto si può schematizzare nel seguente modo:

se  allora il corpo galleggia,

se  allora il corpo affonda.

Anche tipi diversi di fluidi possono galleggiare l’uno sull’altro: l’olio, ad esempio, galleggia sull’acqua poiché è meno denso.

Per determinare se un corpo galleggia, analizziamo le forze che agiscono su di esso. Come si può osservare nelle figure, le forze che agiscono sono due: il peso e la spinta di Archimede. La forza di gravità ovvero il peso del corpo, è diretta verso il basso; la spinta di Archimede, uguale al peso del volume di fluido spostato, è diretta verso l'alto.

Quando la spinta di Archimede è uguale al peso del corpo immerso, il corpo galleggia oppure rimane sospeso, mentre il corpo affonda quando la spinta è minore del suo peso.


Corpo e fluido con uguale densità
Un corpo che ha la stessa densità del fluido in cui è immerso rimane sospeso, ovvero rimane in equilibrio nel fluido. In questo caso la spinta di Archimede che agisce sul corpo è esattamente uguale al suo peso. I sottomarini e alcuni pesci sono in grado di rimanere sospesi in acqua "modificando" la loro densità.

corpo resta sospeso

Forze uguali agenti sul cubo sommerso gli permettono di rimanere sospeso nel fluido: il cubo ha la stessa densità dell'acqua.


Corpo con densità maggiore del fluido
Se la forma dello scafo di una nave le permette di galleggiare, che cosa ne può determinare l'affondamento? Come ben si sa, quando il peso di una nave diventa maggiore della spinta di Archimede agente su di essa, la nave affonda. Questo può avvenire quando lo scafo della nave si danneggia e imbarca acqua: quando l'acqua entra nello scafo, il volume dell'acqua spostata dalla nave si riduce e di conseguenza si riduce la spinta di Archimede.

corpo affonda

Il cubo di metallo affonda perché il suo peso è maggiore della spinta di Archimede: il cubo è più denso dell'acqua.


Corpo con densità inferiore del fluido
Ci si può meravigliare del fatto che un pezzo di acciaio affonda, mentre una nave costruita in acciaio galleggia. Il galleggiamento di una pesante nave è legato alla forma del suo scafo: essa è tale da spostare un grande volume d'acqua, generando una grande spinta di Archimede sufficiente a contrastare l'enorme peso della nave.
La capacità di una nave di galleggiare in acqua può anche essere spiegata in termini di densità.

corpo galleggia

Il cubo di legno galleggia a una profondità per cui la spinta di Archimede e il suo peso sono uguali: il cubo è meno denso dell'acqua.


Il bikini solare

 

Quando si indossa un bikini a energia solare si può stare tutto il giorno in spiaggia ascoltando la propria musica preferita senza il rischio che il proprio iPod si scarichi! Sorriso

Per questo motivo Andrew Schneider ha progettato questo costume da bagno dotato di pannelli solari fotovoltaici a film sottile e di un collegamento USB. Si tratta di una curiosità che è stata sviluppata dall’Interactive Telecommunications Program dell’Università di New York. La versione maschile del costume da bagno è in via di sviluppo Occhiolino

bikini solare


venerdì 25 febbraio 2011

Epitaph King Crimson

 

I King Crimson sono stati un notevole fenomeno musicale degli anni ‘70. Il brano che ho selezionato per il “post musicale” di oggi è un pezzo davvero molto bello, impressionante per le visioni allucinate che ispira. Si tratta di Epitaph, tratto dall’album In the Court of the Crimson King del 1969.

Da ascoltare in religioso silenzio Occhiolino

Epitaph King Crimson

Testo e traduzione di Epitaph:

Epitaph

The wall on which the prophets wrote
Is cracking at the seams.
Upon the instruments of death
The sunlight brightly gleams.
When every man is torn apart
With nightmares and with dreams,
Will no one lay the laurel wreath
As silence drowns the screams.
Between the iron gates of fate,
The seeds of time were sown,
And watered by the deeds of those
Who know and who are known;
Knowledge is a deadly friend
When no one sets the rules.
The fate of all mankind I see
Is in the hands of fools.
Confusion will be my epitaph.
As I crawl a cracked and broken path
If we make it we can all sit back
and laugh.
But I fear tomorrow I'll be crying,
Yes I fear tomorrow I'll be crying.

 

Epitaffio

Il muro su cui scrivono i profeti
Si sta rompendo le cuciture
Sotto gli strumenti della morte
La luce del sole splende raggiante
Quando ogni uomo è fatto a pezzi
Con gli incubi e con i sogni
Nessuno toglierà la corona di foglie di lauro?
Mentre il silenzio sommerge le urla
Tra i cancelli di ferro del destino
Venivano seminati i semi del tempo
e annaffiati dalle scritture di coloro
Che conoscono e che sono conosciuti
La conoscenza è un amico mortale
Quando nessuno imposta le regole
Il destino di ogni tipo di uomo che vedo
E' nelle mani degli stupidi
La confusione sarà il mio epitaffio
Mentre striscio per un sentiero crepato e sfasciato
Se ce la facciamo possiamo sederci tutti
E ridere
Ma ho paura che domani starò piangendo
Si, ho paura che domani starò piangendo


Lavoro di una forza

 

Il lavoro compiuto da una forza costante applicata ad un corpo è uguale al prodotto scalare

tra la forza e il vettore spostamento del corpo.

Ciò equivale al modulo dello spostamento per la proiezione della forza nella direzione dello spostamento o, equivalentemente, al prodotto del modulo della forza per la proiezione dello spostamento nella direzione della forza.

Il lavoro è una grandezza scalare che, nel sistema S.I., si misura in (Newton per metro). Questa unità di misura si chiama joule e si indica con la lettera J.

Quanto i vettori forza e spostamento sono paralleli, il lavoro è dato semplicemente dal prodotti delle loro intensità (moduli). Quando sono perpendicolari il lavoro è uguale a zero. Il lavoro è positivo (lavoro motore), quando l’angolo tra il vettore forza e il vettore spostamento è acuto, negativo (lavoro resistente) quanto tale angolo è ottuso.

lavoro di una forza

- Lavoro compiuto da una forza variabile

In un diagramma cartesiano che ha lo spostamento sull’asse delle ascisse e l’intensità della forza su quello delle ordinate, il lavoro W compiuto da una forza non costante è dato dall’area della parte di piano compresa tra l’asse degli spostamenti, il grafico dell’intensità della forza e due rette parallele all’asse delle ordinate che definiscono il valore iniziale e quello finale della posizione dell’oggetto.

lavoro di una forza variabile


giovedì 24 febbraio 2011

Strano fenomeno!

 

Questo filmato ci mostra uno strano fenomeno che avviene in assenza di peso. Facendo girare un oggetto a forma di T, nello specifico una maniglia di installazione, si nota che la rotazione presenterà due stati distinti che si alternano al passare del tempo. Un fenomeno davvero curioso che si può osservare facilmente grazie all’assenza di peso.

Perché succede questo? Qualcuno riesce a formulare una spiegazione?

Buona visione del filmato.

Fenomeno strano in assenza di peso

La malaria: come agisce e come danneggia il corpo umano.

 

La malaria veniva un tempo chiamata anche “paludismo” perché si credeva che fosse una malattia trasmessa dalle paludi e dall’aria stagnante. In realtà è una malattia ancora molto diffusa, soprattutto nei paesi poveri.

Le ultime statistiche mostrano che il 40% della popolazione mondiale rischia di contrarre la malaria e per questo è una delle emergenze sanitarie più urgenti a livello internazionale.

La malaria viene trasmessa dalla zanzara Anopheles che fa entrare un parassita nel corpo umano, il Plasmodium.

In questo filmato possiamo vedere una interessante lezione riguardo a cosa sia la malaria, come agisca ed in che modo danneggia il corpo umano. Il video è interessante perché si concentra non sulle cause della trasmissione della malattia, ma sul meccanismo di azione all'interno del corpo.

Buona visione (il filmato è in spagnolo, ma non ci sono grandi problemi di comprensione).

La malaria

mercoledì 23 febbraio 2011

Misura della costante elastica di una molla

 

La legge di Hooke ci mostra che l’allungamento di una molla è direttamente proporzionale alla forza che l’ha provocato. Dal punto di vista matematico la legge di Hooke si può esprimere così:

dove F è la forza, x è l’allungamento e k è la cosiddetta “costante elastica”. Il segno meno è dovuto al fatto che la forza si oppone all’allungamento. La costante elastica dipende dalla molla e può essere misurata con un semplice esperimento, come possiamo vedere in questo filmato realizzato in una scuola. Basta davvero poco: un supporto per tenere la molla, un metro, dei pesi, una molla (ovviamente Occhiolino), carta e penna per scrivere i dati e per fare i calcoli. Adesso tocca a voi Sorriso

Buona visione del filmato. Guardatelo bene, così potrete facilmente replicare l’esperimento.

Misura della costante elastica di una molla

Space X Starship: il nuovo tentativo di lancio del 18 novembre 2023.

Vediamo un frammento della diretta del lancio dello Starship del 18 noembre 2023. Il Booster 9, il primo stadio del razzo, esplode poco dopo...