Un atomo può emettere un fotone con un meccanismo piuttosto facile da capire. Un elettrone, che si trova in uno stato di energia E1 riceve energia dall’esterno (per esempio mediante un urto o assorbendo un fotone), in questo modo può portarsi in un altro stato, a cui compete l’energia E2 > E1. A questo punto l’elettrone può ritornare spontaneamente allo stato di partenza (o a un altro stato di energia inferiore), emettendo un fotone di energia hf, dove f è la frequenza (h è la costante di Planck), tale da conservare l’energia totale:
hf = E2 – E1
Di solito l’elettrone rimane nello stato di energia superiore per un intervallo di tempo dell’ordine di 10-8 secondi. Esistono però casi in cui la durata di tale permanenza può allungarsi fino a 10-3 secondi. Quando ciò accade si dice che lo stato di energia E2 è metastabile, cioè quasi stabile.
(Lo schema di funzionamento di un laser a rubino)
L’emissione stimolata
I fotoni hanno spin 1 e quindi seguono la statistica di Bose-Einstein. Ciò li distingue dai fermioni, per i quali vale il principio di esclusione di Pauli, secondo cui non è possibile trovare due particelle fermioniche identiche (cioè due particelle dello stesso tipo con gli stessi numeri quantici). Per i bosoni vale la proprietà opposta: essi tendono ad avere tutti le stesse caratteristiche. Così, se un elettrone si trova nello stato atomico di energia E2, la presenza nelle sue vicinanze di un fotone che ha proprio la frequenza f data dalla formula precedente, provoca la ricaduta dell’elettrone stesso nello stato E1, con l’emissione di un nuovo fotone che è del tutto identico a quello che era già presente. Questo fenomeno è detto emissione stimolata.
Il Laser
Nel laser (acronimo di Light Amplification by Stimulated Emission of Radiation, cioè “amplificazione della luce mediante l’emissione stimolata di radiazione”) il meccanismo dell’emissione stimolata è utilizzato per ottenere un fascio di luce composto da fotoni tutti identici tra loro. Ciò è possibile grazie a una specie di “reazione a catena” per la quale un fotone casualmente presente ne fa emettere un altro identico a sé, i due fotoni risultanti stimolano l’emissione di altri due fotoni identici e così via. Si ottiene in questo modo un fascio luminoso con caratteristiche uniche. Infatti il fascio risulta
- estremamente monocromatico: la lunghezza d’onda della luce emessa può essere precisa a meno di una parte su un miliardo;
- estremamente coerente: la fase iniziale dell’onda emessa può essere costante su una distanza (detta “lunghezza di coerenza” dell’ordine di diverse centinaia di chilometri; questa distanza è molto maggiore della lunghezza di coerenza della luce della luce di una lampada a gas che è, in genere, molto più breve del metro;
- estremamente direzionale: proprio perché i fotoni che compongono il fascio laser sono tutti identici tra loro, il fascio ha un parallelismo che non si può ottenere mediante usuali sistemi di focalizzazione che utilizzano lenti; l’allargamento del fascio è determinato soltanto dalla diffrazione dovuta al foro di uscita della luce laser.
L’inversione di popolazione
Un fascio laser contiene un grande numero di fotoni ottenuti per emissione stimolata. Perché ciò avvenga è necessario che lo stato quantico di energia E2 sia molto popolato di elettroni provenienti dallo stato di energia E1 che, così, risulta semivuoto. Visto che, in condizioni normali, accade il contrario (con lo stato di energia inferiore molto popolato e quello di energia superiore semivuoto), tale condizione è detta inversione di popolazione.
Vale la pena di sottolineare che il realizzarsi di una inversione di popolazione è condizione necessaria per ottenere un fascio laser. Senza di essa, infatti, il fenomeno dell’emissione stimolata non produrrebbe altro che pochi fotoni sporadici, di grande interesse teorico, ma di nessuna utilità pratica.
Ma come si può ottenere una inversione di popolazione? Come esempio, la figura sotto illustra il meccanismo che si realizza, tra l’altro, nei laser a rubino. In condizioni normali lo stato quantico di energia E1 è popolato, mentre sono vuoti gli stati con energia E2 ed E3. Per ottenere l’inversione di popolazione, lo stato con energia E2 deve essere metastabile.
Se si invia luce di spettro continuo mediante una sorgente luminosa convenzionale, i fotoni che hanno la frequenza adatta provocano il passaggio di elettroni dallo stato di energia E1 a quello di energia E3. Da quest’ultimo gli elettroni passano velocemente a quello di energia E2 dove, invece, rimangono per tempi relativamente lunghi. Scegliendo in modo opportuno il materiale e le condizioni fisiche di funzionamento, si fa in modo che quest’ultimo livello risulti più popolato di quello iniziale, che ha energia E1.
A questo punto, il primo fotone di energia adatta che si trova nella zona di spazio interessata innesca la catena delle emissioni stimolate descritte prima, così si produce il raggio laser.
In conclusione, il funzionamento del laser è la migliore prova del fatto che i pacchetti di energia elettromagnetica, che noi chiamiamo “fotoni”, sono dei bosoni e non dei fermioni.