I buoni divulgatori si vedono dalla loro capacità di rendere semplici le nozioni più complicate. Anche le famose onde gravitazionali sono un argomento complesso, ma c'è sempre qualcuno che è in grado di rendere l'argomento più facile da comprendere e per fortuna non mancano divulgatori italiani che hanno questo gradito talento.
In questo filmato, che dura solo 9 minuti, si cerca di dare una breve spiegazione di cosa sono le onde gravitazionali. Io credo che sia sufficiente per avere un'idea di questa grande e recente scoperta. Le onde gravitazionali furono previste teoricamente da Albert Einstein più di 100 anni fa e avere dimostrato che esistono realmente è una delle numerose grandi conquiste dell'intelletto e dell'ingegno umano.
La Meccanica Quantistica è una delle teorie moderne più affascinanti, controverse, controintuitive e feconde che l'uomo abbia mai formulato. Appare anche abbastanza complessa anche dal punto di vista matematico. E' possibile per un "profano" capirci qualcosa? Ovviamente la risposta è affermativa. Proviamo a guardare insieme questo video e vediamo se qualcosa ci entra in testa?
Foto della nana bianca Sirio B. (Leggi qui per avere maggiori informazioni su Sirio B)
La notte del 19 gennaio 2017 è stata una breve pausa del maltempo che ha colpito in parte anche la Sicilia. Ho notato subito un cielo abbastanza limpido, ma la cosa più "strana" era che le stelle brillavano pochissimo. Ad esempio Sirio, che di solito nelle serate invernali con pessimo seeing brilla come se fosse un faretto impazzito (anche con rapide variazioni cromatiche), stavolta sembrava quasi "ferma". Allora ho tentato il "colpo grosso" e ho montato in balcone il mio Celestron CPC-800 con la camera planetaria ASI290MC del Gac Catania. Il risultato lo potete vedere in foto: si riesce a vedere la famosa nana bianca Sirio B. Una foto non facile perché Sirio B è 8200 volte più debole di Sirio A e quindi tende ad essere sommersa dalla luminosità della stella principale.
Dettagli tecnici della ripresa:
Telescopio: Celestron CPC-800 xlt @ f/10
Camera: ASI290MC
Durata del filmato: 62.17 sec.
Frames: 500
Tempo di posa per frame: 124.5 ms
Framerate: 8 fps
Gain: 188
Temperatura del sensore: 16 °C
Frames elaborati: i migliori 50 scelti manualmente.
Software utilizzati: Registax e Photoshop.
La sera tra il 29 e il 30 novembre 2018 sono riuscito a osservare due comete! La prima è la "famosa" 46P/Wirtanen, nota come la "cometa di Natale 2018" e che promette di diventare luminosa (già in effetti lo è) verso la metà di dicembre 2018. La seconda è la più debole 38P/Stephan-Oterma.
Per l'osservazione ho usato ben quattro strumenti: un Newton 155/1000 mm montato su una base dobson autocostruita, un dobson GSO 250/1250 mm, un binocolo 8x30 Stein Optik e un binocolo Vixen 20x80 BWCF.
Queste sono le descrizioni osservative delle due comete.
Cometa 46P/Wirtanen (mag. 5,9). Visibile a stento con il binocolo 8x30, ma aveva già superato il meridiano e stava “tramontando” dietro il palazzo molto illuminato che faceva perdere l’adattamento all’oscurità. Con il binocolo 20x80 invece si vedeva benissimo e appariva larga con modesta condensazione centrale. La magnitudine indicata è di 5,9 e tutto sommato corrisponde a ciò che ho visto.
Cometa 38P/Stephan-Oterma (mag. 10,58). L’ho cercata prima con il Newton 155/1000 e l’ho trovata senza troppe difficoltà (55x), ma si vedeva solo in visione distolta. Con il dobson 250/1250 invece si riusciva a vedere anche in visione diretta (70x) e si percepiva una condensazione centrale abbastanza compatta circondata da un alone diffuso.
Spesso il modello atomico ad orbitali può risultare un po’ difficile da imparare, perché c’è un’oggettiva difficoltà a visualizzare come sono fatti gli orbitali elettronici. Se si ha a disposizione una buona animazione si può capire sempre qualcosa in più.
In questo video possiamo vedere una buona spiegazione del modello atomico ad orbitali.
Il pannello fotovoltaico trasforma la radiazione solare in energia elettrica. E’ composto da celle fotovoltaiche in silicio che assorbono i fotoni presenti nei raggi solari. I fotoni solari interagiscono con gli elettroni presenti negli atomi di silicio. Alcuni di questi elettroni sono separati dall’atomo di silicio, generando un flusso di corrente elettrica all’interno di un materiale semiconduttore.
Ogni pannello fotovoltaico presenta infatti una cablatura sulla superficie di ciascuna cella che convoglia il flusso di corrente generato dalla radiazione luminosa ad un inverter. Il flusso di corrente che esce dal pannello fotovoltaico è infatti continuo, ma la rete elettrica conduce corrente alternata. Della trasformazione se occupa, appunto, l’inverter, aprendo e chiudendo un circuito.
Un impianto fotovoltaico prevede poi la presenza di un trasformatore che aumenta la tensione della corrente alternata per essere adattata alle caratteristiche della rete elettrica e di un contatore che rileva il quantitativo di energia prodotta.
Installare anche nella propria abitazione un impianto fotovoltaico è molto semplice: è sufficiente un tetto rivolto a sud non ombreggiato da altri edifici o vegetazione. I vantaggi sono evidenti: produzione di energia elettrica per sé e in caso di surplus, vendita dell’energia elettrica in eccesso.
Nel seguente filmato è possibile vedere una animazione di quanto è scritto sopra. Buona visione a tutti.
Non sempre la costruzione di una pala eolica deve essere fatta per rifornirsi di energia. In questo caso un ragazzo ha costruito una mini turbina eolica solo per divertirsi e fare un filmato. Basta un coltellino, dei legnetti e dello spago e poi avere la voglia di passare un po’ di tempo a divertirsi.
Prima però è meglio guardare un attimo il filmato, ok? Buona visione a tutti.
Noi giorni scorsi ne hanno parlato persino nei telegiornali, perché un video che illustrava il metodo per fare la “moltiplicazione giapponese” era diventato virale e aveva fatto 100 milioni di visualizzazioni in poche settimane. In realtà questo metodo non è esattamente un novità e secondo me non è nemmeno un metodo particolarmente efficiente e veloce, se non in pochi casi particolari. Ecco un filmato che spiega come fare la “moltiplicazione giapponese”. Questo metodo per moltiplicare i numeri usa linee che si intersecano e consiste nel contare i punti di intersezione per trovare il risultato finale della moltiplicazione. In realtà non credo che sia un metodo molto veloce e semplice, soprattutto se si moltiplicano numeri che hanno molte cifre alte, ad esempio numeri che sono pieni di 8 e 9. Negli esempi che si trovano online infatti gli esempi sono fatti moltiplicando numeri con piccole cifre, ad esempio 123 x 321. Ma se si prova a fare una moltiplicazione come 987 x 998, ci si ritrova subito con un groviglio di linee in cui andare a contare i punti di intersezione non è per nulla facile. In ogni caso è utile conoscerlo per divertirsi anche un po’ a giocare.
Avete mai visto i filmati pubblicati nel canale YouTube “The Q”? Se non lo avete ancora fatto potete cominciare a farlo, soprattutto se siete dei creativi che amano il fai da te.
Ecco alcuni esempi di realizzazioni proposte in questo canale:
Come costruire una pressa idraulica usando compensato e siringhe di plastica!
Come costruire un potentissimo cannone con delle lattine di Coca Cola.
Come realizzare un labirinto creativo per un criceto.
Come costruire un dispenser per caramelle
E poi ci sono tanti altri filmati, io ne ho presentati solo alcuni, cioè quelli che mi hanno colpito di più. Nel complesso è un canale davvero molto interessante e pieno di spunti creativi. Spero di avervi fatto una buona segnalazione.
Consideriamo una bacchetta di plastica, una sfera di metallo e un filo isolante che sostiene la sfera di metallo. Se strofiniamo la bacchetta di plastica con un panno e la avviciniamo alla sfera di plastica vedremo che sfera e bacchetta si attraggono. Questa attrazione avviene anche se la sfera di metallo è scarica elettricamente.
Com’è possibile che un corpo carico ne attragga uno scarico?
La risposta è nella legge di Coulomb. La bacchetta di plastica ha una carica elettrica negativa, quando si avvicina alla sfera ne respinge gli elettroni, che sono liberi di muoversi all’interno del metallo, e si spostano dalla parte opposta della sfera. Così la parte della sfera più vicina alla bacchetta rimane carica positivamente, mentre la superficie più lontana diventa negativa. Per la legge di Coulomb, però, l’attrazione tra cariche vicine è maggiore di quella tra cariche lontane. Ecco perché la sfera è attratta dalla bacchetta.
Questo in realtà non è un fenomeno di elettrizzazione vero e proprio, perché nel complesso la sfera di metallo rimane elettricamente neutra com’era all’inizio. La bacchetta infatti non trasferisce una carica sulla sfera ma spinge, cioè induce, le sue cariche interne a redistribuirsi in maniera tale che alcune parti della sfera risultino localmente elettrizzate.
Questo fenomeno si chiama induzione elettrostatica.
Non è un fenomeno irreversibile. Per tornare nelle condizioni iniziali, infatti, basta allontanare la bacchetta. Subito allora le cariche positive e negative presenti sulla sfera tornano a mescolarsi. L’induzione elettrostatica si verifica grazie alla libertà di movimento degli elettroni all’interno di un materiale conduttore.
Però anche un materiale isolante, come la carta, può essere attirato da un corpo carico. Una penna di plastica elettrizzata per strofinio, per esempio, riesce ad attrarre piccoli pezzetti di carta.
In questo caso avviene il fenomeno chiamato polarizzazione. Gli elettroni della carta che sono più vicini alla penna sentono una forza che li respinge e anche se sono poco liberi di muoversi nelle molecole, una piccola ridistribuzione di carica si crea ugualmente. Il risultato è che nel complesso le cariche di segno opposto sono più vicine tra loro, mentre quelle dello stesso segno sono più distanti. Ecco perché i pezzettini di carta sono attratti dalla penna.
Il fenomeno della polarizzazione spiega come mai l’intensità della forza di Coulomb si riduce quando le cariche sono poste in un materiale isolante. Una carica positiva attrae verso di se gli elettroni delle molecole che la circondano, perciò risulta schermata dallo strato di cariche negative e interagisce con altre cariche più debolmente di quanto farebbe nel vuoto. Il valore della costante dielettrica di un materiale è dunque una misura di quanto quel materiale si polarizza in presenza di cariche elettriche.
Nel seguente filmato potete vedere una animazione di quanto detto nel testo precedente. Buona visione a tutti.
In questi filmati viene presentato un pannello solare ad aria calda fai da te. Nel primo video si vede un test di questi pannelli che mostrano chiaramente la loro grande efficienza. Nel secondo video invece viene illustrata la possibilità di aumentare ulteriormente l’efficienza utilizzando dei riflettori. Nel terzo video invece viene misurata la temperatura raggiunta con il metodo dei riflettori per migliorare l’efficienza.