mercoledì 24 settembre 2014

Come si forma la pioggia

Nel mare, come sappiamo, la pressione idrostatica aumenta con la profondità per effetto del peso della colonna di liquido sovrastante. Analogamente nell’atmosfera la pressione dipende dalla massa di aria che si trova al di sopra di un certo punto. La pressione atmosferica è quindi massima al livello del mare e diminuisce man mano che si sale di quota. Infatti, scendendo velocemente di quota, avvertiamo generalmente che le orecchie si “tappano”, proprio a causa dell’aumento di pressione.

Occorre comunque precisare che nel caso dell’aria, a differenza dell’acqua, la diminuzione della pressione è accompagnata da una diminuzione della densità e che, pertanto, i cambiamenti della pressione atmosferica al variare della quota hanno un andamento complesso.

Variazione pressione Atmosferica con l'altezza

In ogni caso la diminuzione della pressione con l’altitudine è uno dei fattori fondamentali che dà luogo al più importante fenomeno atmosferico sul pianeta: la pioggia.

Per spiegare la formazione della pioggia partiamo immaginando di lasciare libero un palloncino pieno di elio: questo inizierà a volare verso l’alto in quanto la sua densità è inferiore a quella dell’aria. Nella salita il palloncino si troverà attorno una pressione sempre minore: l’elio tenderà ad espandersi fino probabilmente a fare esplodere il palloncino.

La “fisica dei gas” ci permette di sapere che una massa d’aria che si espande senza cambi di calore tende a raffreddarsi. Sappiamo inoltre che il vapore acqueo presente nell’aria umida può condensare per raffreddamento, come accade sullo specchio freddo del bagno. Un effetto simile può verificarsi anche senza una superficie solida: quando una massa d’aria umida si raffredda si possono formare mini goccioline d’acqua che si trasformano in pioggia se raggiungono una certa dimensione.

Dunque, con questi “ingredienti” fisici possiamo intuire che una massa d’aria che sale verso l’alto si espande e contemporaneamente si raffredda, come accade all’elio del palloncino. Il raffreddamento fa sì che l’umidità dell’aria condensi in piccolissime gocce d’acqua dando origine alle nuvole. Se l’aria è sufficientemente carica di vapore acqueo e i moti verticali sono consistenti, le goccioline possono diventare abbastanza grandi per formare infine le gocce di pioggia.


Tag di Technorati:

martedì 23 settembre 2014

L’accelerometro negli smartphone

Quasi tutti i moderni telefoni cellulari , come altri dispositivi elettronici, contengono al loro interno accelerometri in cui funzionamento è basato su sensori che misurano le forze agenti su una massetta nota.

Il principio di funzionamento di questi sensori si basa sulla misura della forza impressa agli elementi elastici che racchiudono la massetta disposti lungo i tre assi di un sistema cartesiano.

Accelerometro smartphone

Si può assumere che se la deformazione degli elementi elastici è molto piccola la massa acceleri in modo solidale con il telefono . Per il secondo principio della dinamica, se il telefono viene accelerato in avanti, la forza necessaria per far accelerare la massa al suo interno verrà impressa dall’elemento elastico che gli sta dietro che risulta leggermente compresso. Il dispositivo è progettato per misurare tramite sensori le forze impresse sugli elementi elastici. Dalla misurazione della forza impressa si può risalire al valore dell’accelerazione in avanti del telefono.

Naturalmente anche la gravità genera una forza sulla massa. Questi accelerometri sono pertanto in grado di determinare la direzione della forza di gravità. Se, per esempio, l’apparecchio è posizionato verticalmente, i sensori misurano un’accelerazione di 9,81 m/s2 lungo la direzione y; se invece è in posizione orizzontale l’accelerazione si manifesta lungo la direzione x. Proprio sulla direzione della forza di gravità si basa la diversa modalità dello schermo che passa istantaneamente da “ritratto” a “panorama” con una semplice rotazione dell’apparecchio.


lunedì 22 settembre 2014

I frattali (documentario)

In questo interessante documentario si compie un affascinante viaggio nel complesso mondo dei frattali. Verranno presentati due concetti fondamentali della geometria frattale: l’autosomiglianza e il caos. Verranno presentati anche due personaggi che hanno dato un contributo fondamentale a queste idee: Benoît Mandelbrot e Edward Norton Lorenz.

Perché questo grande interesse per la geometria frattale? Perché in natura le forme geometriche semplici, come sfere, ellissi circonferenze, sono delle rare eccezioni, mentre le forme geometriche molto complesse sono molto più comuni. Di solito è difficile studiare forme geometriche complesse con un approccio formale. La geometria frattale ci viene in soccorso. Come si fa a descrivere una nuvola? E una montagna? Anche gli alberi hanno una struttura complessa. La geometria euclidea (quella che si impara a scuola) non riesce a rendere conto di queste strutture complesse. Il linguaggio della geometria frattale invece è il linguaggio giusto per descrivere la complessità delle forme della natura.

Insieme di Mandelbrot

In poco più di un’ora questo documentario vi conquisterà (ve lo assicuro) e permetterà di capire i concetti più basilari e affascinanti del mondo dei frattali. La geometria frattale ha al giorno d’oggi molte applicazioni pratiche che permettono di risolvere problemi che spaziano dalla geologia, all’astronomia fino alla biologia.

Buona visione del documentario.


domenica 21 settembre 2014

La sezione aurea

La sezione aurea è sempre esistita, sia nel nostro Universo, sia nella nostra casa: la Terra. La sua storia è antica di 3 millenni; rappresenta lo standard di riferimento della perfezione e dell’armonia. I primi che la studiarono furono i greci che la utilizzarono in architettura e scultura. Numerosi artisti e matematici la approfondirono nel corso dei secoli. Uno dei più importanti matematici del medioevo, Fibonacci, scrisse il Liber Abaci, un libro che introdusse l’algebra araba nel mondo occidentale. In questo libro compare anche il rapporto aureo, considerato come un numero che dona perfezione. Qui compare anche la cosiddetta successione di Fibonacci, ossia una serie di numeri che parte dal numero zero:

0 1 1 2 3 5 8 13 21 34 55…

i successivi sono la somma dei precedenti fino all’infinito. Questi numeri sono i numeri aurei. Dividendo due numeri ci si accorge che, più andando avanti, più il risultato diventa sempre più vicino al numero aureo 1,61803…

In natura troviamo innumerevoli esempi di proporzioni auree; le conchiglie dei molluschi gasteropodi, ad esempio, hanno una forma a spirale che è detta spirale aurea. L’esempio che meglio rappresenta la spirale aurea è il guscio del Nautilus.

Anche molte galassie presentano una forma a spirale che approssima molto bene la spirale aurea, come vediamo ad esempio nella galassia M74, visibile e fotografabile con piccoli telescopi nella costellazione dei Pesci.

Nel seguente filmato possiamo vedere una bella spiegazione della sezione aurea in molti dei suoi aspetti più interessanti. Si passa dalla matematica alla pittura, dalla natura alla fotografia. Si tratta di una notevole ricerca realizzata dalla classe 3a A del Liceo Scientifico “G. Spezia” di Domodossola. 29 minuti di un vero e proprio documentario in cui, con esempi semplici ed incisivi, potrete capire molte cose sulla sezione aurea.

Buona visione a tutti.


Quando saremo mangiati dalla galassia di Andromeda

La galassia di Andromeda è una delle poche galassie del cielo visibile ad occhio nudo. Nelle belle serate di fine estate o di autunno è possibile rintracciarla nei pressi della stella Mirach sfruttando come punti di riferimento le stelle mu andromedae e nu andromedae. La galassia, catalogata come M31 (o anche NGC 224), è visibile molto vicino alla stella nu andromedae come un fuso luminoso allungato in direzione NE/SW.

Una bella immagine della galassia di Andromeda ottenuta dall’astrofilo Riccardo Cafarelli.

Non tutti sanno che tra cinque miliardi di anni la galassia di Andromeda e la nostra Via Lattea avranno una collisione. La nostra galassia, come tante sua consimili, è cresciuta di dimensioni e di peso anche cannibalizzando intere piccole galassie, e nonostante non vi siano stati recenti banchetti, i resti di queste libagioni sono riconoscibili per gli astronomi.

Fra qualcosa come cinque miliardi di anni la Via Lattea cercherà di addentare la vicina galassia di Andromeda (attualmente a 2,3 milioni di anni luce), ma tecnicamente in realtà sarà lei a mangiare noi, visto che è più grande.

Nel filmato possiamo vedere una simulazione di come sarà questo immane scontro. Negli scontri tra galassie le stelle non si urtano reciprocamente, ma le nubi di gas e di polveri si compenetrano aumentando la loro densità. Questo innescherà nuovamente una intensa formazione stellare.

Buona visione del filmato.


venerdì 19 settembre 2014

Corso di astronomia a Catania il sabato dal 8 novembre al 20 dicembre 2014.

Cari amici, vi comunichiamo che sono aperte le iscrizioni al XXIX Corso di Astronomia del Gruppo Astrofili Catanesi (GAC) che si svolgerà tutti i sabati, dall'8 novembre al 20 dicembre 2014, nell’Aula Magna gentilmente messa a disposizione dal CUS Catania, alla Cittadella Universitaria.

Lezioni teoriche, attività pratiche e attività on-line. Si farà uso di tecniche multimediali con proiezione di immagini, filmati e simulazioni realizzate al computer. Durante le attività pratiche, condotte in gruppi fissi, guidati ciascuno da un tutor, si potranno usare i telescopi e le fotocamere del GAC. I gruppi saranno omogenei come età e i tutor coetanei dei corsisti.
Da casa propria (senza obbligo) si potrà partecipare, via internet, a una classe virtuale per esercitazioni e condivisione di materiale e ad un forum per notizie e domande.
Quattro lezioni di astrofisica saranno tenute da astronomi, tra cui due ricercatori dell'INAF - Osservatorio Astrofisico di Catania.

Il corso si terrà il sabato dalle 16:00 alle 18:30 nell'aula magna del CUS CATANIA (Città universitaria) ingresso consigliato: via Santa Sofia 66. Inizio 8 novembre 2014.

Le iscrizioni si ricevono a Catania in VIA MILO 28, il giovedì dalle 19 alle 21. Per il corso è richiesta la quota di €50. I soci GAC in regola con le quote del 2015 potranno partecipare gratuitamente. Per poter essere inseriti nei gruppi devono comunque formalizzare l'iscrizione al corso. Ogni corsista riceverà dispense di appunti, mappe stellari e software astronomici. Il corso, divulgativo, è aperto a tutti. L’attestato è valido come credito formativo per gli studenti delle scuole secondarie.

A fine corso, sorteggio di un binocolo astronomico e di libri, forniti dal GAC.

PROGRAMMA
Un incontro si svolgerà da un sito con basso inquinamento luminoso - osservazioni ad occhio nudo, esercitazioni al telescopio e realizzazione di semplici foto astronomiche.

8 novembre 2013
Prof.ssa Claudia Russo - Stelle e costellazioni.

Conferenza. Illustrazione attività online. Conoscenza Tutors.

 

15 novembre
1. Dott. Paolo Romano (INAF – Osservatorio Astrofisico di Catania) -Il Sistema Solare nell'Era spaziale
2. Con la guida dei tutors - Riconoscere stelle e costellazioni.

Conferenza. Premiazione attività online. Osservazioni a occhio nudo.

 

22 novembre
1. Prof. Giuseppe Marino- La vita di una stella
2. Con la guida dei tutors - L'osservazione astronomica

Conferenza. Osservazioni al telescopio.

 

29 novembre
Dott. Giuseppe Cutispoto (INAF – Osservatorio Astrofisico di Catania) - La ricerca di pianeti extrasolari

Conferenza. Premiazione attività online.

 

6 dicembre
1. Dott. Alfio Bonanno (INAF – Osservatorio Astrofisico di Catania) - Big Bang e destino dell'Universo
2. Con la guida dei tutors -L'osservazione astronomica

Conferenza. Osservazioni al telescopio.

 

13 dicembre
Con la guida dei tutors - L'osservazione astronomica

Da un sito con basso inquinamento luminoso - osservazioni ad occhio nudo, esercitazioni al telescopio e realizzazione di semplici astrofoto.

 

20 dicembre
Prof. Giovanni Strazzulla (INAF – Osservatorio Astrofisico di Catania) - Nel Cosmo alla ricerca della vita

Conferenza. Consegna degli attestati di partecipazione, estrazione finale di un binocolo astronomico e di libri.


Tag di Technorati:

Turbina eolica fai da te in alluminio (tripala)

In questo video della durata di poco più di un minuto possiamo vedere una interessante turbina eolica fai da te. Si tratta di una turbina realizzata in alluminio, tripala, in configurazione ad asse orizzontale (quella più classica). Il diametro del rotore è di 2,5 metri. Durante la ripresa del filmato la velocità del vento era di 10 metri al secondo. Il vento è una risorsa molto interessante anche per essere sfruttata con piccole turbine eoliche che alimentano una singola abitazione. Ovviamente in Italia la maggior parte delle abitazioni sono immensi alveari condominiali che non consentono l’installazione di piccole turbine eoliche.

Tuttavia le abitazioni isolate in luoghi non cittadini potrebbero ben avvalersi di installazioni di turbine eoliche e pannelli solari. Invece sono ancora pochi che riescono a installare simili impianti, non so se per disinteresse o per le numerose difficoltà burocratiche. In realtà non mancano nemmeno le difficoltà tecniche; ad esempio una turbina eolica deve trovarsi ad una distanza minima dall’edificio e non tutti dispongono di simili spazi attorno ad una casa seppur isolata, inoltre è necessario che l’intensità media del vento sia sufficiente e anche questo non si può dare per scontato per tutti i luoghi (la velocità del vento deve essere di almeno 5 metri al secondo). In questi casi però si potrebbe pensare ad un impianto con pannelli solari fotovoltaici.

L’importante è che ci si attrezzi per l’uso di energie rinnovabili… Sorriso

Buona visione del filmato.


giovedì 18 settembre 2014

I segreti del Kung Fu, documentario National Geographic

Pugni potenti, calci mortali, attacchi veloci come il lampo; questo è il Kung Fu, l’arte marziale dell’antica Cina che ha difeso dinastie e scatenato rivoluzioni. Oggi, sull’isola di Taiwan, esistono molti maestri di Kung Fu. Alcuni sono avvolti nel mistero, sotto la maschera di società segrete, alcuni compiono imprese di forza sovrumana per la salute e la virilità. Altri gareggiano in competizioni internazionali.

350 anni fa, un rivoluzionario generale di guerra, Zheng Cheng-gong, venne dalla Cina e liberò l’isola di Taiwan dal dominio coloniale olandese. Gli abitanti dell’isola considerano il generale Zheng l’antenato originale che fondò Taiwan. Una figura storica santificata sulla quale abbondano le leggende, inclusa quella sul suo coinvolgimento con una società segreta. Questa potente associazione e il suo ricorso al Kung Fu mortale, generarono una tradizione delle arti marziali a Taiwan che ancora oggi trova eco nei migliori maestri di arti marziali.

In questo documentario, realizzato dal National Geographic, possiamo vedere quali sono i segreti dal Kung Fu.

Buona visione a tutti.


mercoledì 17 settembre 2014

Fulmini nel cielo, 16 settembre 2014 (foto e filmato)

La sera del 16 settembre 2014, verso le ore 21, mi affaccio dal mio balcone orientato in direzione sud e vedo qualcosa che mi impressiona moltissimo. Fulmini spettacolari che illuminano il cielo. Questi fulmini sono davvero frequentissimi e sembrano saettare nel cielo in maniera incontrollata. Subito rientro in casa per prendere treppiede e reflex digitale: non posso perdere di filmare e fotografare un simile spettacolo della natura. Mi devo sbrigare, perché non so se il temporale di sta avvicinando velocemente: già qualche debole tuono si comincia a sentire. Dopo due minuti sono già fuori a fare i primi scatti. Nel frattempo mia moglie guarda su internet la mappa dei fulmini e vede che l’attività elettrica è lontana, sul mare, in direzione di Augusta (CT). Fa impressione che quei fulmini sembrino così colossali dal mio punto di osservazione a Pedara (CT).

Ecco alcune delle foto che sono riuscito a scattare.

Fulmine1

Fulmine2

Fulmine 4 bis

Ed ecco il breve filmato.

Dopo un paio d’ore il fenomeno si è esaurito. Nella mia zona non ha neanche piovuto e i tuoni sono sempre rimasti dei suoni lontani. Per fortuna è rimasto solo un bellissimo spettacolo. Ad Augusta invece c’è stato un vero e proprio nubifragio e sono caduti 17 mm di pioggia.


Oro falso: come si riconosce.

L’oro è un metallo prezioso che nella nostra società ha un valore intrinseco anche se la sua quotazione può cambiare. Nel passato questo metallo veniva usato per scambi di merci tra Paesi le cui monete avevano valore proprio in virtù del materiale con cui erano fatte. Con l’oro si forgiavano monete e lingotti che venivano utilizzati per i pagamenti.

Monete d'oro

Ma come verificare che una moneta, un lingotto o un gioiello siano veri? A un esame visivo è quasi impossibile capire se un oggetto invece di essere di oro zecchino è stato ottenuto mescolando metalli diversi, o semplicemente placcato in oro. Scalfire l’oggetto o valutarne la resistenza alla deformazione attraverso un morso, come si vede nei film western, sono metodi che possono essere utilizzati per riconoscere oggetti falsi; questi metodi tuttavia rovinano irrimediabilmente gli oggetti stessi.

Si racconta che per primo, Archimede escogitò un esperimento per verificare la purezza di una corona costruita per il tiranno di Siracusa Gerone II da un orafo di fiducia, senza intaccarne la bellezza.

Archimede si basò sull’osservazione che due quantità di uguale massa di argento e oro, immerse in un vaso colmo d’acqua, fanno fuoriuscire quantità di liquido differenti. Egli confrontò quindi la quantità di acqua fuoriuscita dal vaso immergendo prima la corona, poi una quantità di oro puro di uguale massa. Racconta l’architetto e scrittore romano Vitruvio: “Onde discorrendo sopra quel che più usciva fuori, ponendovi la corona, che ponendovi la massa, ritrovò il mescolamento dell’argento con l’oro, e insieme il manifesto furto dell’orefice”.

L’esperimento progettato da Archimede si basa sul fatto che l’oro ha una densità molto alta (19,3 g/cm3), superiore a quella di molti altri metalli. Ed è proprio determinando la densità, attraverso misure di massa e di volume, che è possibile smascherare eventuali inganni.


martedì 16 settembre 2014

La spinta di Archimede

In quale modo la spinta di Archimede determina quando un corpo andrà a fondo?

In questo esempio sperimentale vedremo come analizzare i dati per determinare la spinta di Archimede che agisce su un corpo.

 

Materiale occorrente

- corda lunga 50 cm

- sasso

- Dinamometro

- Contenitore di dimensioni sufficienti a contenere il sasso

- Vaschetta di plastica

- Spugna

- Tovaglioli di carta

- Pesetto da 100 g

- Pezzo di legno legato a un piombino da pesca

- Cilindro graduato da 250 ml.

 

Procedimento

1. Ricopia la tabella mostrata alla fine del post

2. Lega un’estremità della corda al sasso e l’altra estremità al dinamometro. Tieni il dinamometro all’estremità libera, in modo che il sasso rimanga sospeso. Misura e annota nella tabella il suo peso in aria.

3. Poni il contenitore in posizione verticale nella vaschetta di plastica e riempilo completamente con acqua, avendo cura di non versare acqua nella vaschetta di plastica.

4. Abbassa il sasso legato al dinamometro nel contenitore, fino a quando non è completamente immerso nell’acqua (ma senza fargli toccare il fondo). Annota nella tabella il peso apparente in acqua del sasso. Rimuovi il sasso dal contenitore.

5. Rimuovi con cura il contenitore dalla vaschetta di plastica, evitando che si versi altra acqua. Versa l’acqua contenuta nella vaschetta nel cilindro graduato. Annota il volume dell’acqua spostata in tabella.

6. Ripeti i passaggi ad 2 a 5, prima con il pesetto da 100 g e poi con il pezzo di legno legato al piombino da pesca.

7. Per determinare la spinta di Archimede per ogni oggetto, sottrai il peso apparente in acqua dal suo peso in aria. Annota questi valori in tabella.

8. Calcola il peso dell’acqua spostata da ogni corpo (1 mL di acqua pesa 0,0098 N). Annota i valori in tabella.

 

Analisi e conclusioni

- Quale forza è responsabile della differenza tra il peso di un oggetto in aria e il suo peso apparente in acqua?

- In quale modo la spinta di Archimede è legata al peso del liquido spostato?

- Definisci la spinta di Archimede e descrivi due modi per misurarla e calcolarla.

- Spiega che cosa fa galleggiare o affondare un corpo, utilizzando i termini spinta di Archimede, peso, forza, densità e gravità.

 

OGGETTO PESO IN ARIA (N) PESO APPARENTE IN ACQUA (N) SPINTA DI ARCHIMEDE (N) VOLUME ACQUA SPOSTATA (mL) PESO ACQUA SPOSTATA (N)
Sasso          
Pesetto da 100 g          
Blocco di legno con piombino          


Space X Starship: il nuovo tentativo di lancio del 18 novembre 2023.

Vediamo un frammento della diretta del lancio dello Starship del 18 noembre 2023. Il Booster 9, il primo stadio del razzo, esplode poco dopo...